1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
//! An ergonomic, opinionated, safe and user-friendly wrapper to the R-API
//!
//! This library aims to provide an interface that will be familiar to
//! first-time users of Rust or indeed any compiled language.
//!
//! See [`Robj`] for much of the content of this crate.
//! [`Robj`] provides a safe wrapper for the R object type.
//!
//! ## Examples
//!
//! Use attributes and macros to export to R.
//!
//! ```ignore
//! use extendr_api::prelude::*;
//! // Export a function or impl to R.
//! #[extendr]
//! fn fred(a: i32) -> i32 {
//! a + 1
//! }
//!
//! // define exports using extendr_module
//! extendr_module! {
//! mod mymodule;
//! fn fred;
//! }
//!
//! ```
//!
//! In R:
//!
//! ```ignore
//! result <- fred(1)
//! ```
//!
//! [Robj] is a wrapper for R objects.
//! The r!() and R!() macros let you build R objects
//! using Rust and R syntax respectively.
//! ```
//! use extendr_api::prelude::*;
//! test! {
//! // An R object with a single string "hello"
//! let character = r!("hello");
//! let character = r!(["hello", "goodbye"]);
//!
//! // An R integer object with a single number 1L.
//! // Note that in Rust, 1 is an integer and 1.0 is a real.
//! let integer = r!(1);
//!
//! // An R real object with a single number 1.
//! // Note that in R, 1 is a real and 1L is an integer.
//! let real = r!(1.0);
//!
//! // An R real vector.
//! let real_vector = r!([1.0, 2.0]);
//! let real_vector = &[1.0, 2.0].iter().collect_robj();
//! let real_vector = r!(vec![1.0, 2.0]);
//!
//! // An R function object.
//! let function = R!("function(x, y) { x + y }")?;
//!
//! // A named list using the list! macro.
//! let list = list!(a = 1, b = 2);
//!
//! // An unnamed list (of R objects) using the List wrapper.
//! let list = r!(List::from_values(vec![1, 2, 3]));
//! let list = r!(List::from_values(vec!["a", "b", "c"]));
//! let list = r!(List::from_values(&[r!("a"), r!(1), r!(2.0)]));
//!
//! // A symbol
//! let sym = sym!(wombat);
//!
//! // A R vector using collect_robj()
//! let vector = (0..3).map(|x| x * 10).collect_robj();
//! }
//! ```
//!
//! In Rust, we prefer to use iterators rather than loops.
//!
//! ```
//! use extendr_api::prelude::*;
//! test! {
//! // 1 ..= 100 is the same as 1:100
//! let res = r!(1 ..= 100);
//! assert_eq!(res, R!("1:100")?);
//!
//! // Rust arrays are zero-indexed so it is more common to use 0 .. 100.
//! let res = r!(0 .. 100);
//! assert_eq!(res.len(), 100);
//!
//! // Using map is a super fast way to generate vectors.
//! let iter = (0..3).map(|i| format!("fred{}", i));
//! let character = iter.collect_robj();
//! assert_eq!(character, r!(["fred0", "fred1", "fred2"]));
//! }
//! ```
//!
//! To index a vector, first convert it to a slice and then
//! remember to use 0-based indexing. In Rust, going out of bounds
//! will cause and error (a panic) unlike C++ which may crash.
//! ```
//! use extendr_api::prelude::*;
//! test! {
//! let vals = r!([1.0, 2.0]);
//! let slice = vals.as_real_slice().ok_or("expected slice")?;
//! let one = slice[0];
//! let two = slice[1];
//! // let error = slice[2];
//! assert_eq!(one, 1.0);
//! assert_eq!(two, 2.0);
//! }
//! ```
//!
//! Much slower, but more general are these methods:
//! ```
//! use extendr_api::prelude::*;
//! test! {
//! let vals = r!([1.0, 2.0, 3.0]);
//!
//! // one-based indexing [[i]], returns an object.
//! assert_eq!(vals.index(1)?, r!(1.0));
//!
//! // one-based slicing [x], returns an object.
//! assert_eq!(vals.slice(1..=2)?, r!([1.0, 2.0]));
//!
//! // $ operator, returns an object
//! let list = list!(a = 1.0, b = "xyz");
//! assert_eq!(list.dollar("a")?, r!(1.0));
//! }
//! ```
//!
//! The [R!] macro lets you embed R code in Rust
//! and takes Rust expressions in {{ }} pairs.
//!
//! The [Rraw!] macro will not expand the {{ }} pairs.
//! ```
//! use extendr_api::prelude::*;
//! test! {
//! // The text "1 + 1" is parsed as R source code.
//! // The result is 1.0 + 1.0 in Rust.
//! assert_eq!(R!("1 + 1")?, r!(2.0));
//!
//! let a = 1.0;
//! assert_eq!(R!("1 + {{a}}")?, r!(2.0));
//!
//! assert_eq!(R!(r"
//! x <- {{ a }}
//! x + 1
//! ")?, r!(2.0));
//!
//! assert_eq!(R!(r#"
//! x <- "hello"
//! x
//! "#)?, r!("hello"));
//!
//! // Use the R meaning of {{ }} and do not expand.
//! assert_eq!(Rraw!(r"
//! x <- {{ 1 }}
//! x + 1
//! ")?, r!(2.0));
//! }
//! ```
//!
//! The [r!] macro converts a rust object to an R object
//! and takes parameters.
//! ```
//! use extendr_api::prelude::*;
//! test! {
//! // The text "1.0+1.0" is parsed as Rust source code.
//! let one = 1.0;
//! assert_eq!(r!(one+1.0), r!(2.0));
//! }
//! ```
//!
//! Rust has a concept of "Owned" and "Borrowed" objects.
//!
//! Owned objects, such as [Vec] and [String] allocate memory
//! which is released when the object lifetime ends.
//!
//! Borrowed objects such as &[i32] and &str are just pointers
//! to annother object's memory and can't live longer than the
//! object they reference.
//!
//! Borrowed objects are much faster than owned objects and use less
//! memory but are used only for temporary access.
//!
//! When we take a slice of an R vector, for example, we need the
//! original R object to be alive or the data will be corrupted.
//!
//! ```
//! use extendr_api::prelude::*;
//! test! {
//! // robj is an "Owned" object that controls the memory allocated.
//! let robj = r!([1, 2, 3]);
//!
//! // Here slice is a "borrowed" reference to the bytes in robj.
//! // and cannot live longer than robj.
//! let slice = robj.as_integer_slice().ok_or("expected slice")?;
//! assert_eq!(slice.len(), 3);
//! }
//! ```
//!
//! ## Writing tests
//!
//! To test the functions exposed to R, wrap your code in the [`test!`] macro.
//! This macro starts up the necessary R machinery for tests to work.
//!
//! ```no_run
//! use extendr_api::prelude::*;
//!
//! #[extendr]
//! fn things() -> Strings {
//! Strings::from_values(vec!["Test", "this"])
//! }
//!
//! // define exports using extendr_module
//! extendr_module! {
//! mod mymodule;
//! fn things;
//! }
//!
//!
//! #[cfg(test)]
//! mod test {
//! use super::*;
//! use extendr_api::prelude::*;
//!
//! #[test]
//! fn test_simple_function() {
//! assert_eq!(things().elt(0), "Test")
//! }
//! }
//! ```
//!
//! ## Returning `Result<T, E>` to R
//!
//! Two experimental features for returning error-aware R `list`s, `result_list` and `result_condition`,
//! can be toggled to avoid panics on `Err`. Instead, an `Err` `x` is returned as either
//! - list: `list(ok=NULL, err=x)` when `result_list` is enabled,
//! - error condition: `<error: extendr_error>`, with `x` placed in `condition$value`, when `resultd_condition` is enabled.
//!
//! It is currently solely up to the user to handle any result on R side.
//!
//! There is an added overhead of wrapping Rust results in an R `list` object.
//!
//! ```ignore
//! use extendr_api::prelude::*;
//! // simple function always returning an Err string
//! #[extendr]
//! fn oups(a: i32) -> std::result::Result<i32, String> {
//! Err("I did it again".to_string())
//! }
//!
//! // define exports using extendr_module
//! extendr_module! {
//! mod mymodule;
//! fn oups;
//! }
//!
//! ```
//!
//! In R:
//!
//! ```ignore
//! # default result_panic feature
//! oups(1)
//! > ... long panic traceback from rust printed to stderr
//!
//! # result_list feature
//! lst <- oups(1)
//! print(lst)
//! > list(ok = NULL, err = "I did it again")
//!
//! # result_condition feature
//! cnd <- oups(1)
//! print(cnd)
//! > <error: extendr_error>
//! print(cnd$value)
//! > "I did it again"
//!
//! # handling example for result_condition
//! oups_handled <- function(a) {
//! val_or_err <- oups(1)
//! if (inherits(val_or_err, "extendr_error")) stop(val_or_err)
//! val_or_err
//! }
//! ```
//!
//! ## Feature gates
//!
//! extendr-api has some optional features behind these feature gates:
//!
//! - `ndarray`: provides the conversion between R's matrices and [`ndarray`](https://docs.rs/ndarray/latest/ndarray/).
//! - `num-complex`: provides the conversion between R's complex numbers and [`num-complex`](https://docs.rs/num-complex/latest/num_complex/).
//! - `serde`: provides the [`serde`](https://serde.rs/) support.
//! - `graphics`: provides the functionality to control or implement graphics devices.
//! - `either`: provides implementation of type conversion traits for `Either<L, R>` from [`either`](https://docs.rs/either/latest/either/) if `L` and `R` both implement those traits.
//! - `faer`: provides conversion between R's matrices and [`faer`](https://docs.rs/faer/latest/faer/).
//!
//! extendr-api supports three ways of returning a Result<T,E> to R.
//! Only one behavior feature can be enabled at a time.
//! - `result_panic`: Default behavior, return `Ok` as is, panic! on any `Err`
//!
//! Default behavior can be overridden by specifying `extend_api` features, i.e. `extendr-api = {..., default-features = false, features= ["result_condition"]}`
//! These features are experimental and are subject to change.
//! - `result_list`: return `Ok` as `list(ok=?, err=NULL)` or `Err` `list(ok=NULL, err=?)`
//! - `result_condition`: return `Ok` as is or `Err` as $value in an R error condition.
#![doc(
html_logo_url = "https://raw.githubusercontent.com/extendr/extendr/master/extendr-logo-256.png"
)]
pub mod error;
pub mod functions;
pub mod io;
pub mod iter;
pub mod lang_macros;
pub mod metadata;
pub mod ownership;
pub mod prelude;
pub mod rmacros;
#[cfg(feature = "serde")]
pub mod serializer;
#[cfg(feature = "serde")]
pub mod deserializer;
#[cfg(feature = "graphics")]
pub mod graphics;
pub mod robj;
pub mod scalar;
pub mod thread_safety;
pub mod wrapper;
pub mod na;
pub mod optional;
pub(crate) mod conversions;
pub use std::convert::{TryFrom, TryInto};
pub use std::ops::Deref;
pub use std::ops::DerefMut;
pub use robj::Robj;
//////////////////////////////////////////////////
// Note these pub use statements are deprecated
//
// `use extendr_api::prelude::*;`
//
// instead.
pub use error::*;
pub use functions::*;
pub use lang_macros::*;
pub use na::*;
pub use robj::*;
pub use thread_safety::{catch_r_error, handle_panic, single_threaded, throw_r_error};
pub use wrapper::*;
pub use extendr_macros::*;
use scalar::Rbool;
//////////////////////////////////////////////////
/// TRUE value eg. `r!(TRUE)`
pub const TRUE: Rbool = Rbool::true_value();
/// FALSE value eg. `r!(FALSE)`
pub const FALSE: Rbool = Rbool::false_value();
/// NULL value eg. `r!(NULL)`
pub const NULL: () = ();
/// NA value for integers eg. `r!(NA_INTEGER)`
pub const NA_INTEGER: Option<i32> = None;
/// NA value for real values eg. `r!(NA_REAL)`
pub const NA_REAL: Option<f64> = None;
/// NA value for strings. `r!(NA_STRING)`
pub const NA_STRING: Option<&str> = None;
/// NA value for logical. `r!(NA_LOGICAL)`
pub const NA_LOGICAL: Rbool = Rbool::na_value();
#[doc(hidden)]
pub use std::collections::HashMap;
/// This is needed for the generation of wrappers.
#[doc(hidden)]
pub use libR_sys::DllInfo;
/// This is necessary for `#[extendr]`-impl
#[doc(hidden)]
pub use libR_sys::R_ExternalPtrAddr;
/// This is used in `#[extendr(use_rng = true)]` on `fn`-items.
#[doc(hidden)]
pub use libR_sys::GetRNGstate;
/// This is used in `#[extendr(use_rng = true)]` on `fn`-items.
#[doc(hidden)]
pub use libR_sys::PutRNGstate;
#[doc(hidden)]
pub use libR_sys::SEXP;
#[doc(hidden)]
use libR_sys::*;
#[doc(hidden)]
use std::ffi::CString;
pub use metadata::Metadata;
#[doc(hidden)]
pub struct CallMethod {
pub call_symbol: std::ffi::CString,
pub func_ptr: *const u8,
pub num_args: i32,
}
unsafe fn make_method_def(
cstrings: &mut Vec<std::ffi::CString>,
rmethods: &mut Vec<libR_sys::R_CallMethodDef>,
func: &metadata::Func,
wrapped_name: &str,
) {
cstrings.push(std::ffi::CString::new(wrapped_name).unwrap());
rmethods.push(libR_sys::R_CallMethodDef {
name: cstrings.last().unwrap().as_ptr(),
fun: Some(std::mem::transmute(func.func_ptr)),
numArgs: func.args.len() as i32,
});
}
// Internal function used to implement the .Call interface.
// This is called from the code generated by the #[extendr] attribute.
#[doc(hidden)]
pub unsafe fn register_call_methods(info: *mut libR_sys::DllInfo, metadata: Metadata) {
let mut rmethods = Vec::new();
let mut cstrings = Vec::new();
for func in metadata.functions {
let wrapped_name = format!("wrap__{}", func.mod_name);
make_method_def(&mut cstrings, &mut rmethods, &func, wrapped_name.as_str());
}
for imp in metadata.impls {
for func in imp.methods {
let wrapped_name = format!("wrap__{}__{}", imp.name, func.mod_name);
make_method_def(&mut cstrings, &mut rmethods, &func, wrapped_name.as_str());
}
}
rmethods.push(libR_sys::R_CallMethodDef {
name: std::ptr::null(),
fun: None,
numArgs: 0,
});
libR_sys::R_registerRoutines(
info,
std::ptr::null(),
rmethods.as_ptr(),
std::ptr::null(),
std::ptr::null(),
);
// This seems to allow both symbols and strings,
libR_sys::R_useDynamicSymbols(info, Rboolean::FALSE);
libR_sys::R_forceSymbols(info, Rboolean::FALSE);
}
/// Type of R objects used by [Robj::rtype].
#[derive(Debug, PartialEq)]
pub enum Rtype {
Null, // NILSXP
Symbol, // SYMSXP
Pairlist, // LISTSXP
Function, // CLOSXP
Environment, // ENVSXP
Promise, // PROMSXP
Language, // LANGSXP
Special, // SPECIALSXP
Builtin, // BUILTINSXP
Rstr, // CHARSXP
Logicals, // LGLSXP
Integers, // INTSXP
Doubles, // REALSXP
Complexes, // CPLXSXP
Strings, // STRSXP
Dot, // DOTSXP
Any, // ANYSXP
List, // VECSXP
Expressions, // EXPRSXP
Bytecode, // BCODESXP
ExternalPtr, // EXTPTRSXP
WeakRef, // WEAKREFSXP
Raw, // RAWSXP
S4, // S4SXP
Unknown,
}
/// Enum use to unpack R objects into their specialist wrappers.
// Todo: convert all Robj types to wrappers.
// Note: this only works if the wrappers are all just SEXPs.
#[derive(Debug, PartialEq)]
pub enum Rany<'a> {
Null(&'a Robj), // NILSXP
Symbol(&'a Symbol), // SYMSXP
Pairlist(&'a Pairlist), // LISTSXP
Function(&'a Function), // CLOSXP
Environment(&'a Environment), // ENVSXP
Promise(&'a Promise), // PROMSXP
Language(&'a Language), // LANGSXP
Special(&'a Primitive), // SPECIALSXP
Builtin(&'a Primitive), // BUILTINSXP
Rstr(&'a Rstr), // CHARSXP
Logicals(&'a Logicals), // LGLSXP
Integers(&'a Integers), // INTSXP
Doubles(&'a Doubles), // REALSXP
Complexes(&'a Complexes), // CPLXSXP
Strings(&'a Strings), // STRSXP
Dot(&'a Robj), // DOTSXP
Any(&'a Robj), // ANYSXP
List(&'a List), // VECSXP
Expressions(&'a Expressions), // EXPRSXP
Bytecode(&'a Robj), // BCODESXP
ExternalPtr(&'a Robj), // EXTPTRSXP
WeakRef(&'a Robj), // WEAKREFSXP
Raw(&'a Raw), // RAWSXP
S4(&'a S4), // S4SXP
Unknown(&'a Robj),
}
/// Convert extendr's Rtype to R's SEXPTYPE.
/// Panics if the type is Unknown.
pub fn rtype_to_sxp(rtype: Rtype) -> SEXPTYPE {
use Rtype::*;
use SEXPTYPE::*;
match rtype {
Null => NILSXP,
Symbol => SYMSXP,
Pairlist => LISTSXP,
Function => CLOSXP,
Environment => ENVSXP,
Promise => PROMSXP,
Language => LANGSXP,
Special => SPECIALSXP,
Builtin => BUILTINSXP,
Rstr => CHARSXP,
Logicals => LGLSXP,
Integers => INTSXP,
Doubles => REALSXP,
Complexes => CPLXSXP,
Strings => STRSXP,
Dot => DOTSXP,
Any => ANYSXP,
List => VECSXP,
Expressions => EXPRSXP,
Bytecode => BCODESXP,
ExternalPtr => EXTPTRSXP,
WeakRef => WEAKREFSXP,
Raw => RAWSXP,
#[cfg(not(use_objsxp))]
S4 => S4SXP,
#[cfg(use_objsxp)]
S4 => OBJSXP,
Unknown => panic!("attempt to use Unknown Rtype"),
}
}
/// Convert R's SEXPTYPE to extendr's Rtype.
pub fn sxp_to_rtype(sxptype: SEXPTYPE) -> Rtype {
use Rtype::*;
use SEXPTYPE::*;
match sxptype {
NILSXP => Null,
SYMSXP => Symbol,
LISTSXP => Pairlist,
CLOSXP => Function,
ENVSXP => Environment,
PROMSXP => Promise,
LANGSXP => Language,
SPECIALSXP => Special,
BUILTINSXP => Builtin,
CHARSXP => Rstr,
LGLSXP => Logicals,
INTSXP => Integers,
REALSXP => Doubles,
CPLXSXP => Complexes,
STRSXP => Strings,
DOTSXP => Dot,
ANYSXP => Any,
VECSXP => List,
EXPRSXP => Expressions,
BCODESXP => Bytecode,
EXTPTRSXP => ExternalPtr,
WEAKREFSXP => WeakRef,
RAWSXP => Raw,
#[cfg(not(use_objsxp))]
S4SXP => S4,
#[cfg(use_objsxp)]
OBJSXP => S4,
_ => Unknown,
}
}
const PRINTF_NO_FMT_CSTRING: &[std::os::raw::c_char] = &[37, 115, 0]; // same as "%s\0"
#[doc(hidden)]
pub fn print_r_output<T: Into<Vec<u8>>>(s: T) {
let cs = CString::new(s).expect("NulError");
unsafe {
Rprintf(PRINTF_NO_FMT_CSTRING.as_ptr(), cs.as_ptr());
}
}
#[doc(hidden)]
pub fn print_r_error<T: Into<Vec<u8>>>(s: T) {
let cs = CString::new(s).expect("NulError");
unsafe {
REprintf(PRINTF_NO_FMT_CSTRING.as_ptr(), cs.as_ptr());
}
}
#[cfg(test)]
mod tests {
use super::prelude::*;
use crate as extendr_api;
use extendr_macros::extendr;
use extendr_macros::extendr_module;
use extendr_macros::pairlist;
#[extendr]
pub fn inttypes(a: i8, b: u8, c: i16, d: u16, e: i32, f: u32, g: i64, h: u64) {
assert_eq!(a, 1);
assert_eq!(b, 2);
assert_eq!(c, 3);
assert_eq!(d, 4);
assert_eq!(e, 5);
assert_eq!(f, 6);
assert_eq!(g, 7);
assert_eq!(h, 8);
}
#[extendr]
pub fn floattypes(a: f32, b: f64) {
assert_eq!(a, 1.);
assert_eq!(b, 2.);
}
#[extendr]
pub fn strtypes(a: &str, b: String) {
assert_eq!(a, "abc");
assert_eq!(b, "def");
}
#[extendr]
pub fn vectortypes(a: Vec<i32>, b: Vec<f64>) {
assert_eq!(a, [1, 2, 3]);
assert_eq!(b, [4., 5., 6.]);
}
#[extendr]
pub fn robjtype(a: Robj) {
assert_eq!(a, Robj::from(1))
}
#[extendr]
pub fn return_u8() -> u8 {
123
}
#[extendr]
pub fn return_u16() -> u16 {
123
}
#[extendr]
pub fn return_u32() -> u32 {
123
}
#[extendr]
pub fn return_u64() -> u64 {
123
}
#[extendr]
pub fn return_i8() -> i8 {
123
}
#[extendr]
pub fn return_i16() -> i16 {
123
}
#[extendr]
pub fn return_i32() -> i32 {
123
}
#[extendr]
pub fn return_i64() -> i64 {
123
}
#[extendr]
pub fn return_f32() -> f32 {
123.
}
#[extendr]
pub fn return_f64() -> f64 {
123.
}
#[extendr]
pub fn f64_slice(x: &[f64]) -> &[f64] {
x
}
#[extendr]
pub fn i32_slice(x: &[i32]) -> &[i32] {
x
}
#[extendr]
pub fn bool_slice(x: &[Rbool]) -> &[Rbool] {
x
}
#[extendr]
pub fn f64_iter(x: Doubles) -> Doubles {
x
}
#[extendr]
pub fn i32_iter(x: Integers) -> Integers {
x
}
// #[extendr]
// pub fn bool_iter(x: Logicals) -> Logicals {
// x
// }
#[extendr]
pub fn symbol(x: Symbol) -> Symbol {
x
}
#[extendr]
pub fn matrix(x: RMatrix<f64>) -> RMatrix<f64> {
x
}
struct Person {
pub name: String,
}
#[extendr]
/// impl comment.
impl Person {
fn new() -> Self {
Self {
name: "".to_string(),
}
}
fn set_name(&mut self, name: &str) {
self.name = name.to_string();
}
fn name(&self) -> &str {
self.name.as_str()
}
}
// see metadata_test for the following comments.
/// comment #1
/// comment #2
/**
comment #3
comment #4
**/
#[extendr]
/// aux_func doc comment.
fn aux_func(_person: &Person) {}
// Macro to generate exports
extendr_module! {
mod my_module;
fn aux_func;
impl Person;
}
#[test]
fn export_test() {
test! {
use super::*;
// Call the exported functions through their generated C wrappers.
unsafe {
wrap__inttypes(
Robj::from(1).get(),
Robj::from(2).get(),
Robj::from(3).get(),
Robj::from(4).get(),
Robj::from(5).get(),
Robj::from(6).get(),
Robj::from(7).get(),
Robj::from(8).get(),
);
wrap__inttypes(
Robj::from(1.).get(),
Robj::from(2.).get(),
Robj::from(3.).get(),
Robj::from(4.).get(),
Robj::from(5.).get(),
Robj::from(6.).get(),
Robj::from(7.).get(),
Robj::from(8.).get(),
);
wrap__floattypes(Robj::from(1.).get(), Robj::from(2.).get());
wrap__floattypes(Robj::from(1).get(), Robj::from(2).get());
wrap__strtypes(Robj::from("abc").get(), Robj::from("def").get());
wrap__vectortypes(
Robj::from(&[1, 2, 3] as &[i32]).get(),
Robj::from(&[4., 5., 6.] as &[f64]).get(),
);
wrap__robjtype(Robj::from(1).get());
// General integer types.
assert_eq!(Robj::from_sexp(wrap__return_u8()), Robj::from(123_u8));
assert_eq!(Robj::from_sexp(wrap__return_u16()), Robj::from(123));
assert_eq!(Robj::from_sexp(wrap__return_u32()), Robj::from(123.));
assert_eq!(Robj::from_sexp(wrap__return_u64()), Robj::from(123.));
assert_eq!(Robj::from_sexp(wrap__return_i8()), Robj::from(123));
assert_eq!(Robj::from_sexp(wrap__return_i16()), Robj::from(123));
assert_eq!(Robj::from_sexp(wrap__return_i32()), Robj::from(123));
assert_eq!(Robj::from_sexp(wrap__return_i64()), Robj::from(123.));
// Floating point types.
assert_eq!(Robj::from_sexp(wrap__return_f32()), Robj::from(123.));
assert_eq!(Robj::from_sexp(wrap__return_f64()), Robj::from(123.));
}
}
}
#[test]
fn class_wrapper_test() {
test! {
let mut person = Person::new();
person.set_name("fred");
let robj = r!(person);
assert_eq!(robj.check_external_ptr_type::<Person>(), true);
let person2 = <&Person>::try_from(&robj).unwrap();
assert_eq!(person2.name(), "fred");
}
}
#[test]
fn slice_test() {
test! {
unsafe {
// #[extendr]
// pub fn f64_slice(x: &[f64]) -> &[f64] { x }
let robj = r!([1., 2., 3.]);
assert_eq!(Robj::from_sexp(wrap__f64_slice(robj.get())), robj);
// #[extendr]
// pub fn i32_slice(x: &[i32]) -> &[i32] { x }
let robj = r!([1, 2, 3]);
assert_eq!(Robj::from_sexp(wrap__i32_slice(robj.get())), robj);
// #[extendr]
// pub fn bool_slice(x: &[Rbool]) -> &[Rbool] { x }
let robj = r!([TRUE, FALSE, TRUE]);
assert_eq!(Robj::from_sexp(wrap__bool_slice(robj.get())), robj);
// #[extendr]
// pub fn f64_iter(x: Doubles) -> Doubles { x }
let robj = r!([1., 2., 3.]);
assert_eq!(Robj::from_sexp(wrap__f64_iter(robj.get())), robj);
// #[extendr]
// pub fn i32_iter(x: Integers) -> Integers { x }
let robj = r!([1, 2, 3]);
assert_eq!(Robj::from_sexp(wrap__i32_iter(robj.get())), robj);
// #[extendr]
// pub fn bool_iter(x: Logicals) -> Logicals { x }
// TODO: reinstate this test.
// let robj = r!([TRUE, FALSE, TRUE]);
// assert_eq!(Robj::from_sexp(wrap__bool_iter(robj.get())), robj);
// #[extendr]
// pub fn symbol(x: Symbol) -> Symbol { x }
let robj = sym!(fred);
assert_eq!(Robj::from_sexp(wrap__symbol(robj.get())), robj);
// #[extendr]
// pub fn matrix(x: Matrix<&[f64]>) -> Matrix<&[f64]> { x }
let m = RMatrix::new_matrix(1, 2, |r, c| if r == c {1.0} else {0.});
let robj = r!(m);
assert_eq!(Robj::from_sexp(wrap__matrix(robj.get())), robj);
}
}
}
#[test]
fn r_output_test() {
// R equivalent
// > txt_con <- textConnection("test_con", open = "w")
// > sink(txt_con)
// > cat("Hello world")
// > sink()
// > close(txt_con)
// > expect_equal(test_con, "Hello world")
//
test! {
let txt_con = R!(r#"textConnection("test_con", open = "w")"#).unwrap();
call!("sink", &txt_con).unwrap();
rprintln!("Hello world %%!"); //%% checks printf formatting is off, yields one % if on
call!("sink").unwrap();
call!("close", &txt_con).unwrap();
let result = R!("test_con").unwrap();
assert_eq!(result, r!("Hello world %%!"));
}
}
#[test]
fn test_na_str() {
assert_ne!(<&str>::na().as_ptr(), "NA".as_ptr());
assert_eq!(<&str>::na(), "NA");
assert!(!"NA".is_na());
assert!(<&str>::na().is_na());
}
#[test]
fn metadata_test() {
test! {
// Rust interface.
let metadata = get_my_module_metadata();
assert_eq!(metadata.functions[0].doc, " comment #1\n comment #2\n\n comment #3\n comment #4\n *\n aux_func doc comment.");
assert_eq!(metadata.functions[0].rust_name, "aux_func");
assert_eq!(metadata.functions[0].mod_name, "aux_func");
assert_eq!(metadata.functions[0].r_name, "aux_func");
assert_eq!(metadata.functions[0].args[0].name, "_person");
assert_eq!(metadata.functions[1].rust_name, "get_my_module_metadata");
assert_eq!(metadata.impls[0].name, "Person");
assert_eq!(metadata.impls[0].methods.len(), 3);
// R interface
let robj = Robj::from_sexp(wrap__get_my_module_metadata());
let functions = robj.dollar("functions").unwrap();
let impls = robj.dollar("impls").unwrap();
assert_eq!(functions.len(), 3);
assert_eq!(impls.len(), 1);
}
}
#[test]
fn pairlist_macro_works() {
test! {
assert_eq!(pairlist!(1, 2, 3), Pairlist::from_pairs(&[("", 1), ("", 2), ("", 3)]));
assert_eq!(pairlist!(a=1, 2, 3), Pairlist::from_pairs(&[("a", 1), ("", 2), ("", 3)]));
assert_eq!(pairlist!(1, b=2, 3), Pairlist::from_pairs(&[("", 1), ("b", 2), ("", 3)]));
assert_eq!(pairlist!(a=1, b=2, c=3), Pairlist::from_pairs(&[("a", 1), ("b", 2), ("c", 3)]));
assert_eq!(pairlist!(a=NULL), Pairlist::from_pairs(&[("a", ())]));
assert_eq!(pairlist!(), Pairlist::from(()));
}
}
#[test]
fn big_r_macro_works() {
test! {
assert_eq!(R!("1")?, r!(1.0));
assert_eq!(R!(r"1")?, r!(1.0));
assert_eq!(R!(r"
x <- 1
x
")?, r!(1.0));
assert_eq!(R!(r"
x <- {{ 1.0 }}
x
")?, r!(1.0));
assert_eq!(R!(r"
x <- {{ (0..4).collect_robj() }}
x
")?, r!([0, 1, 2, 3]));
assert_eq!(R!(r#"
x <- "hello"
x
"#)?, r!("hello"));
assert_eq!(Rraw!(r"
x <- {{ 1 }}
x
")?, r!(1.0));
}
}
}