mdl::mtrx()
(read: "model matrix") implements an opinionated and performant
reimagining of model matrices. It takes in a formula and data frame,
like model.frame()
, and outputs a numeric matrix of predictor values,
like model.matrix()
.
Comparison to Base R
Compared to model.matrix()
, mdl::mtrx()
:
Does not accept formulae with inlined functions (like
-
or*
).Never drops rows (and thus doesn't accept an
na.action
).Assumes that factors levels are encoded as they're intended (i.e.
drop.unused.levels
andxlev
are not accepted).
mdl::mtrx()
is intended to be paired with the recipes package for
preprocessing.
Examples
mdl::mtrx(mpg ~ ., mtcars)
#> (Intercept) cyl disp hp drat wt qsec vs am gear carb
#> 1 1 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> 2 1 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> 3 1 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> 4 1 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#> 5 1 8 360.0 175 3.15 3.440 17.02 0 0 3 2
#> 6 1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#> 7 1 8 360.0 245 3.21 3.570 15.84 0 0 3 4
#> 8 1 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> 9 1 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> 10 1 6 167.6 123 3.92 3.440 18.30 1 0 4 4
#> 11 1 6 167.6 123 3.92 3.440 18.90 1 0 4 4
#> 12 1 8 275.8 180 3.07 4.070 17.40 0 0 3 3
#> 13 1 8 275.8 180 3.07 3.730 17.60 0 0 3 3
#> 14 1 8 275.8 180 3.07 3.780 18.00 0 0 3 3
#> 15 1 8 472.0 205 2.93 5.250 17.98 0 0 3 4
#> 16 1 8 460.0 215 3.00 5.424 17.82 0 0 3 4
#> 17 1 8 440.0 230 3.23 5.345 17.42 0 0 3 4
#> 18 1 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> 19 1 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> 20 1 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#> 21 1 4 120.1 97 3.70 2.465 20.01 1 0 3 1
#> 22 1 8 318.0 150 2.76 3.520 16.87 0 0 3 2
#> 23 1 8 304.0 150 3.15 3.435 17.30 0 0 3 2
#> 24 1 8 350.0 245 3.73 3.840 15.41 0 0 3 4
#> 25 1 8 400.0 175 3.08 3.845 17.05 0 0 3 2
#> 26 1 4 79.0 66 4.08 1.935 18.90 1 1 4 1
#> 27 1 4 120.3 91 4.43 2.140 16.70 0 1 5 2
#> 28 1 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> 29 1 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#> 30 1 6 145.0 175 3.62 2.770 15.50 0 1 5 6
#> 31 1 8 301.0 335 3.54 3.570 14.60 0 1 5 8
#> 32 1 4 121.0 109 4.11 2.780 18.60 1 1 4 2