extendr_api::scalar

Type Alias c64

Source
pub type c64 = Complex<f64>;

Aliased Type§

struct c64 {
    pub re: f64,
    pub im: f64,
}

Fields§

§re: f64

Real portion of the complex number

§im: f64

Imaginary portion of the complex number

Implementations

Source§

impl<T> Complex<T>
where T: ConstZero,

Source

pub const ZERO: Complex<T> = _

A constant Complex 0.

Source§

impl<T> Complex<T>
where T: ConstOne + ConstZero,

Source

pub const ONE: Complex<T> = _

A constant Complex 1.

Source

pub const I: Complex<T> = _

A constant Complex i, the imaginary unit.

Source§

impl<T> Complex<T>

Source

pub const fn new(re: T, im: T) -> Complex<T>

Create a new Complex

Source§

impl<T> Complex<T>
where T: Clone + Num,

Source

pub fn i() -> Complex<T>

Returns the imaginary unit.

See also Complex::I.

Source

pub fn norm_sqr(&self) -> T

Returns the square of the norm (since T doesn’t necessarily have a sqrt function), i.e. re^2 + im^2.

Source

pub fn scale(&self, t: T) -> Complex<T>

Multiplies self by the scalar t.

Source

pub fn unscale(&self, t: T) -> Complex<T>

Divides self by the scalar t.

Source

pub fn powu(&self, exp: u32) -> Complex<T>

Raises self to an unsigned integer power.

Source§

impl<T> Complex<T>
where T: Clone + Num + Neg<Output = T>,

Source

pub fn conj(&self) -> Complex<T>

Returns the complex conjugate. i.e. re - i im

Source

pub fn inv(&self) -> Complex<T>

Returns 1/self

Source

pub fn powi(&self, exp: i32) -> Complex<T>

Raises self to a signed integer power.

Source§

impl<T> Complex<T>
where T: Clone + Signed,

Source

pub fn l1_norm(&self) -> T

Returns the L1 norm |re| + |im| – the Manhattan distance from the origin.

Source§

impl<T> Complex<T>
where T: Float,

Source

pub fn cis(phase: T) -> Complex<T>

Create a new Complex with a given phase: exp(i * phase). See cis (mathematics).

Source

pub fn norm(self) -> T

Calculate |self|

Source

pub fn arg(self) -> T

Calculate the principal Arg of self.

Source

pub fn to_polar(self) -> (T, T)

Convert to polar form (r, theta), such that self = r * exp(i * theta)

Source

pub fn from_polar(r: T, theta: T) -> Complex<T>

Convert a polar representation into a complex number.

Source

pub fn exp(self) -> Complex<T>

Computes e^(self), where e is the base of the natural logarithm.

Source

pub fn ln(self) -> Complex<T>

Computes the principal value of natural logarithm of self.

This function has one branch cut:

  • (-∞, 0], continuous from above.

The branch satisfies -π ≤ arg(ln(z)) ≤ π.

Source

pub fn sqrt(self) -> Complex<T>

Computes the principal value of the square root of self.

This function has one branch cut:

  • (-∞, 0), continuous from above.

The branch satisfies -π/2 ≤ arg(sqrt(z)) ≤ π/2.

Source

pub fn cbrt(self) -> Complex<T>

Computes the principal value of the cube root of self.

This function has one branch cut:

  • (-∞, 0), continuous from above.

The branch satisfies -π/3 ≤ arg(cbrt(z)) ≤ π/3.

Note that this does not match the usual result for the cube root of negative real numbers. For example, the real cube root of -8 is -2, but the principal complex cube root of -8 is 1 + i√3.

Source

pub fn powf(self, exp: T) -> Complex<T>

Raises self to a floating point power.

Source

pub fn log(self, base: T) -> Complex<T>

Returns the logarithm of self with respect to an arbitrary base.

Source

pub fn powc(self, exp: Complex<T>) -> Complex<T>

Raises self to a complex power.

Source

pub fn expf(self, base: T) -> Complex<T>

Raises a floating point number to the complex power self.

Source

pub fn sin(self) -> Complex<T>

Computes the sine of self.

Source

pub fn cos(self) -> Complex<T>

Computes the cosine of self.

Source

pub fn tan(self) -> Complex<T>

Computes the tangent of self.

Source

pub fn asin(self) -> Complex<T>

Computes the principal value of the inverse sine of self.

This function has two branch cuts:

  • (-∞, -1), continuous from above.
  • (1, ∞), continuous from below.

The branch satisfies -π/2 ≤ Re(asin(z)) ≤ π/2.

Source

pub fn acos(self) -> Complex<T>

Computes the principal value of the inverse cosine of self.

This function has two branch cuts:

  • (-∞, -1), continuous from above.
  • (1, ∞), continuous from below.

The branch satisfies 0 ≤ Re(acos(z)) ≤ π.

Source

pub fn atan(self) -> Complex<T>

Computes the principal value of the inverse tangent of self.

This function has two branch cuts:

  • (-∞i, -i], continuous from the left.
  • [i, ∞i), continuous from the right.

The branch satisfies -π/2 ≤ Re(atan(z)) ≤ π/2.

Source

pub fn sinh(self) -> Complex<T>

Computes the hyperbolic sine of self.

Source

pub fn cosh(self) -> Complex<T>

Computes the hyperbolic cosine of self.

Source

pub fn tanh(self) -> Complex<T>

Computes the hyperbolic tangent of self.

Source

pub fn asinh(self) -> Complex<T>

Computes the principal value of inverse hyperbolic sine of self.

This function has two branch cuts:

  • (-∞i, -i), continuous from the left.
  • (i, ∞i), continuous from the right.

The branch satisfies -π/2 ≤ Im(asinh(z)) ≤ π/2.

Source

pub fn acosh(self) -> Complex<T>

Computes the principal value of inverse hyperbolic cosine of self.

This function has one branch cut:

  • (-∞, 1), continuous from above.

The branch satisfies -π ≤ Im(acosh(z)) ≤ π and 0 ≤ Re(acosh(z)) < ∞.

Source

pub fn atanh(self) -> Complex<T>

Computes the principal value of inverse hyperbolic tangent of self.

This function has two branch cuts:

  • (-∞, -1], continuous from above.
  • [1, ∞), continuous from below.

The branch satisfies -π/2 ≤ Im(atanh(z)) ≤ π/2.

Source

pub fn finv(self) -> Complex<T>

Returns 1/self using floating-point operations.

This may be more accurate than the generic self.inv() in cases where self.norm_sqr() would overflow to ∞ or underflow to 0.

§Examples
use num_complex::Complex64;
let c = Complex64::new(1e300, 1e300);

// The generic `inv()` will overflow.
assert!(!c.inv().is_normal());

// But we can do better for `Float` types.
let inv = c.finv();
assert!(inv.is_normal());
println!("{:e}", inv);

let expected = Complex64::new(5e-301, -5e-301);
assert!((inv - expected).norm() < 1e-315);
Source

pub fn fdiv(self, other: Complex<T>) -> Complex<T>

Returns self/other using floating-point operations.

This may be more accurate than the generic Div implementation in cases where other.norm_sqr() would overflow to ∞ or underflow to 0.

§Examples
use num_complex::Complex64;
let a = Complex64::new(2.0, 3.0);
let b = Complex64::new(1e300, 1e300);

// Generic division will overflow.
assert!(!(a / b).is_normal());

// But we can do better for `Float` types.
let quotient = a.fdiv(b);
assert!(quotient.is_normal());
println!("{:e}", quotient);

let expected = Complex64::new(2.5e-300, 5e-301);
assert!((quotient - expected).norm() < 1e-315);
Source§

impl<T> Complex<T>
where T: Float + FloatConst,

Source

pub fn exp2(self) -> Complex<T>

Computes 2^(self).

Source

pub fn log2(self) -> Complex<T>

Computes the principal value of log base 2 of self.

Source

pub fn log10(self) -> Complex<T>

Computes the principal value of log base 10 of self.

Source§

impl<T> Complex<T>
where T: FloatCore,

Source

pub fn is_nan(self) -> bool

Checks if the given complex number is NaN

Source

pub fn is_infinite(self) -> bool

Checks if the given complex number is infinite

Source

pub fn is_finite(self) -> bool

Checks if the given complex number is finite

Source

pub fn is_normal(self) -> bool

Checks if the given complex number is normal

Trait Implementations§

Source§

impl Add<Rcplx> for c64

Source§

fn add(self, rhs: Rcplx) -> Self::Output

Add two Rcplx values or an option of c64.

Source§

type Output = Rcplx

The resulting type after applying the + operator.
Source§

impl CanBeNA for c64

Source§

fn is_na(&self) -> bool

Source§

fn na() -> c64

Source§

impl Div<Rcplx> for c64

Source§

fn div(self, rhs: Rcplx) -> Self::Output

Divide two Rcplx values or an option of c64.

Source§

type Output = Rcplx

The resulting type after applying the / operator.
Source§

impl Mul<Rcplx> for c64

Source§

fn mul(self, rhs: Rcplx) -> Self::Output

Multiply two Rcplx values or an option of c64.

Source§

type Output = Rcplx

The resulting type after applying the * operator.
Source§

impl PartialEq<Rcplx> for c64

use extendr_api::prelude::*;
test! {
    assert!(<c64>::default().eq(&<Rcplx>::default()));
}
Source§

fn eq(&self, other: &Rcplx) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl Sub<Rcplx> for c64

Source§

fn sub(self, rhs: Rcplx) -> Self::Output

Subtract two Rcplx values or an option of c64.

Source§

type Output = Rcplx

The resulting type after applying the - operator.
Source§

impl ToVectorValue for &c64

Source§

fn sexptype() -> SEXPTYPE

Source§

fn to_complex(&self) -> Rcomplex

Source§

fn to_real(&self) -> f64
where Self: Sized,

Source§

fn to_integer(&self) -> i32
where Self: Sized,

Source§

fn to_logical(&self) -> i32
where Self: Sized,

Source§

fn to_raw(&self) -> u8
where Self: Sized,

Source§

fn to_sexp(&self) -> SEXP
where Self: Sized,

Source§

impl ToVectorValue for c64

Source§

fn sexptype() -> SEXPTYPE

Source§

fn to_complex(&self) -> Rcomplex

Source§

fn to_real(&self) -> f64
where Self: Sized,

Source§

fn to_integer(&self) -> i32
where Self: Sized,

Source§

fn to_logical(&self) -> i32
where Self: Sized,

Source§

fn to_raw(&self) -> u8
where Self: Sized,

Source§

fn to_sexp(&self) -> SEXP
where Self: Sized,

Source§

impl<'a, S, D> Add<&'a ArrayBase<S, D>> for Complex<f64>
where S: Data<Elem = Complex<f64>>, D: Dimension,

Source§

type Output = ArrayBase<OwnedRepr<Complex<f64>>, D>

The resulting type after applying the + operator.
Source§

fn add( self, rhs: &ArrayBase<S, D>, ) -> <Complex<f64> as Add<&'a ArrayBase<S, D>>>::Output

Performs the + operation. Read more
Source§

impl<'a, T> Add<&'a Complex<T>> for Complex<T>
where T: Clone + Num,

Source§

type Output = Complex<T>

The resulting type after applying the + operator.
Source§

fn add(self, other: &Complex<T>) -> <Complex<T> as Add<&'a Complex<T>>>::Output

Performs the + operation. Read more
Source§

impl<'a, T> Add<&'a T> for Complex<T>
where T: Clone + Num,

Source§

type Output = Complex<T>

The resulting type after applying the + operator.
Source§

fn add(self, other: &T) -> <Complex<T> as Add<&'a T>>::Output

Performs the + operation. Read more
Source§

impl<S, D> Add<ArrayBase<S, D>> for Complex<f64>
where S: DataOwned<Elem = Complex<f64>> + DataMut, D: Dimension,

Source§

type Output = ArrayBase<S, D>

The resulting type after applying the + operator.
Source§

fn add(self, rhs: ArrayBase<S, D>) -> ArrayBase<S, D>

Performs the + operation. Read more
Source§

impl<T> Add<T> for Complex<T>
where T: Clone + Num,

Source§

type Output = Complex<T>

The resulting type after applying the + operator.
Source§

fn add(self, other: T) -> <Complex<T> as Add<T>>::Output

Performs the + operation. Read more
Source§

impl<T> Add for Complex<T>
where T: Clone + Num,

Source§

type Output = Complex<T>

The resulting type after applying the + operator.
Source§

fn add(self, other: Complex<T>) -> <Complex<T> as Add>::Output

Performs the + operation. Read more
Source§

impl<'a, T> AddAssign<&'a Complex<T>> for Complex<T>
where T: Clone + NumAssign,

Source§

fn add_assign(&mut self, other: &Complex<T>)

Performs the += operation. Read more
Source§

impl<'a, T> AddAssign<&'a T> for Complex<T>
where T: Clone + NumAssign,

Source§

fn add_assign(&mut self, other: &T)

Performs the += operation. Read more
Source§

impl<T> AddAssign<T> for Complex<T>
where T: Clone + NumAssign,

Source§

fn add_assign(&mut self, other: T)

Performs the += operation. Read more
Source§

impl<T> AddAssign for Complex<T>
where T: Clone + NumAssign,

Source§

fn add_assign(&mut self, other: Complex<T>)

Performs the += operation. Read more
Source§

impl<T, U> AsPrimitive<U> for Complex<T>
where T: AsPrimitive<U>, U: 'static + Copy,

Source§

fn as_(self) -> U

Convert a value to another, using the as operator.
Source§

impl<T> Binary for Complex<T>
where T: Binary + Num + PartialOrd + Clone,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl<T> Clone for Complex<T>
where T: Clone,

Source§

fn clone(&self) -> Complex<T>

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
§

impl<E> ComplexField for Complex<E>
where E: RealField,

§

type Real = E

§

type Simd = <E as ComplexField>::Simd

§

type ScalarSimd = <E as ComplexField>::ScalarSimd

§

type PortableSimd = <E as ComplexField>::PortableSimd

§

fn faer_from_f64(value: f64) -> Complex<E>

Converts value from f64 to Self.
The conversion may be lossy when converting to a type with less precision.
§

fn faer_add(self, rhs: Complex<E>) -> Complex<E>

Returns self + rhs.
§

fn faer_sub(self, rhs: Complex<E>) -> Complex<E>

Returns self - rhs.
§

fn faer_mul(self, rhs: Complex<E>) -> Complex<E>

Returns self * rhs.
§

fn faer_neg(self) -> Complex<E>

Returns -self.
§

fn faer_inv(self) -> Complex<E>

Returns 1.0/self.
§

fn faer_conj(self) -> Complex<E>

Returns conjugate(self).
§

fn faer_sqrt(self) -> Complex<E>

Returns the square root of self.
§

fn faer_scale_real(self, rhs: <Complex<E> as ComplexField>::Real) -> Complex<E>

Returns the input, scaled by rhs.
§

fn faer_scale_power_of_two( self, rhs: <Complex<E> as ComplexField>::Real, ) -> Complex<E>

Returns the input, scaled by rhs.
§

fn faer_score(self) -> <Complex<E> as ComplexField>::Real

Returns either the norm or squared norm of the number. Read more
§

fn faer_abs(self) -> <Complex<E> as ComplexField>::Real

Returns the absolute value of self.
§

fn faer_abs2(self) -> <Complex<E> as ComplexField>::Real

Returns the squared absolute value of self.
§

fn faer_nan() -> Complex<E>

Returns a NaN value.
§

fn faer_from_real(real: <Complex<E> as ComplexField>::Real) -> Complex<E>

Returns a complex number whose real part is equal to real, and a zero imaginary part.
§

fn faer_real(self) -> <Complex<E> as ComplexField>::Real

Returns the real part.
§

fn faer_imag(self) -> <Complex<E> as ComplexField>::Real

Returns the imaginary part.
§

fn faer_zero() -> Complex<E>

Returns 0.0.
§

fn faer_one() -> Complex<E>

Returns 1.0.
§

fn faer_align_offset<S>( simd: S, ptr: *const <Complex<E> as Entity>::Unit, len: usize, ) -> Offset<<Complex<E> as Entity>::SimdMask<S>>
where S: Simd,

§

fn faer_slice_as_aligned_simd<S>( simd: S, slice: &[<Complex<E> as Entity>::Unit], offset: Offset<<Complex<E> as Entity>::SimdMask<S>>, ) -> (<Complex<E> as Entity>::PrefixUnit<'_, S>, &[<Complex<E> as Entity>::SimdUnit<S>], <Complex<E> as Entity>::SuffixUnit<'_, S>)
where S: Simd,

§

fn faer_slice_as_aligned_simd_mut<S>( simd: S, slice: &mut [<Complex<E> as Entity>::Unit], offset: Offset<<Complex<E> as Entity>::SimdMask<S>>, ) -> (<Complex<E> as Entity>::PrefixMutUnit<'_, S>, &mut [<Complex<E> as Entity>::SimdUnit<S>], <Complex<E> as Entity>::SuffixMutUnit<'_, S>)
where S: Simd,

§

fn faer_slice_as_simd<S>( slice: &[<Complex<E> as Entity>::Unit], ) -> (&[<Complex<E> as Entity>::SimdUnit<S>], &[<Complex<E> as Entity>::Unit])
where S: Simd,

§

fn faer_slice_as_simd_mut<S>( slice: &mut [<Complex<E> as Entity>::Unit], ) -> (&mut [<Complex<E> as Entity>::SimdUnit<S>], &mut [<Complex<E> as Entity>::Unit])
where S: Simd,

§

fn faer_partial_load_last_unit<S>( simd: S, slice: &[<Complex<E> as Entity>::Unit], ) -> <Complex<E> as Entity>::SimdUnit<S>
where S: Simd,

§

fn faer_partial_store_last_unit<S>( simd: S, slice: &mut [<Complex<E> as Entity>::Unit], values: <Complex<E> as Entity>::SimdUnit<S>, )
where S: Simd,

§

fn faer_partial_load_unit<S>( simd: S, slice: &[<Complex<E> as Entity>::Unit], ) -> <Complex<E> as Entity>::SimdUnit<S>
where S: Simd,

§

fn faer_partial_store_unit<S>( simd: S, slice: &mut [<Complex<E> as Entity>::Unit], values: <Complex<E> as Entity>::SimdUnit<S>, )
where S: Simd,

§

fn faer_simd_splat_unit<S>( simd: S, unit: <Complex<E> as Entity>::Unit, ) -> <Complex<E> as Entity>::SimdUnit<S>
where S: Simd,

§

fn faer_simd_neg<S>( simd: S, values: <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>, ) -> <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>
where S: Simd,

§

fn faer_simd_conj<S>( simd: S, values: <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>, ) -> <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>
where S: Simd,

§

fn faer_simd_rotate_left<S>( simd: S, values: <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>, amount: usize, ) -> <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>
where S: Simd,

§

fn faer_simd_add<S>( simd: S, lhs: <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>, rhs: <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>, ) -> <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>
where S: Simd,

§

fn faer_simd_sub<S>( simd: S, lhs: <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>, rhs: <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>, ) -> <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>
where S: Simd,

§

fn faer_simd_scalar_mul<S>( simd: S, lhs: Complex<E>, rhs: Complex<E>, ) -> Complex<E>
where S: Simd,

§

fn faer_simd_scalar_mul_adde<S>( simd: S, lhs: Complex<E>, rhs: Complex<E>, acc: Complex<E>, ) -> Complex<E>
where S: Simd,

§

fn faer_simd_scalar_conj_mul_adde<S>( simd: S, lhs: Complex<E>, rhs: Complex<E>, acc: Complex<E>, ) -> Complex<E>
where S: Simd,

§

fn faer_simd_scalar_conj_mul<S>( simd: S, lhs: Complex<E>, rhs: Complex<E>, ) -> Complex<E>
where S: Simd,

§

fn faer_simd_mul<S>( simd: S, lhs: <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>, rhs: <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>, ) -> <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>
where S: Simd,

§

fn faer_simd_scale_real<S>( simd: S, lhs: <<<Complex<E> as ComplexField>::Real as Entity>::Group as ForCopyType>::FaerOfCopy<<<Complex<E> as ComplexField>::Real as Entity>::SimdUnit<S>>, rhs: <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>, ) -> <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>
where S: Simd,

§

fn faer_simd_conj_mul<S>( simd: S, lhs: <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>, rhs: <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>, ) -> <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>
where S: Simd,

§

fn faer_simd_mul_adde<S>( simd: S, lhs: <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>, rhs: <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>, acc: <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>, ) -> <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>
where S: Simd,

§

fn faer_simd_conj_mul_adde<S>( simd: S, lhs: <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>, rhs: <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>, acc: <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>, ) -> <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>
where S: Simd,

§

fn faer_simd_abs2_adde<S>( simd: S, values: <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>, acc: <<<Complex<E> as ComplexField>::Real as Entity>::Group as ForCopyType>::FaerOfCopy<<<Complex<E> as ComplexField>::Real as Entity>::SimdUnit<S>>, ) -> <<<Complex<E> as ComplexField>::Real as Entity>::Group as ForCopyType>::FaerOfCopy<<<Complex<E> as ComplexField>::Real as Entity>::SimdUnit<S>>
where S: Simd,

§

fn faer_simd_abs2<S>( simd: S, values: <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>, ) -> <<<Complex<E> as ComplexField>::Real as Entity>::Group as ForCopyType>::FaerOfCopy<<<Complex<E> as ComplexField>::Real as Entity>::SimdUnit<S>>
where S: Simd,

§

fn faer_simd_score<S>( simd: S, values: <<Complex<E> as Entity>::Group as ForCopyType>::FaerOfCopy<<Complex<E> as Entity>::SimdUnit<S>>, ) -> <<<Complex<E> as ComplexField>::Real as Entity>::Group as ForCopyType>::FaerOfCopy<<<Complex<E> as ComplexField>::Real as Entity>::SimdUnit<S>>
where S: Simd,

§

fn faer_is_nan(&self) -> bool

Returns true if self is a NaN value, or false otherwise.
§

fn faer_is_finite(&self) -> bool

Returns true if self is a NaN value, or false otherwise.
§

fn faer_partial_load<S>( simd: S, slice: <Self::Group as ForType>::FaerOf<&[Self::Unit]>, ) -> <Self::Group as ForCopyType>::FaerOfCopy<Self::SimdUnit<S>>
where S: Simd,

§

fn faer_partial_store<S>( simd: S, slice: <Self::Group as ForType>::FaerOf<&mut [Self::Unit]>, values: <Self::Group as ForCopyType>::FaerOfCopy<Self::SimdUnit<S>>, )
where S: Simd,

§

fn faer_partial_load_last<S>( simd: S, slice: <Self::Group as ForType>::FaerOf<&[Self::Unit]>, ) -> <Self::Group as ForCopyType>::FaerOfCopy<Self::SimdUnit<S>>
where S: Simd,

§

fn faer_partial_store_last<S>( simd: S, slice: <Self::Group as ForType>::FaerOf<&mut [Self::Unit]>, values: <Self::Group as ForCopyType>::FaerOfCopy<Self::SimdUnit<S>>, )
where S: Simd,

§

fn faer_simd_splat<S>( simd: S, value: Self, ) -> <Self::Group as ForCopyType>::FaerOfCopy<Self::SimdUnit<S>>
where S: Simd,

§

fn faer_simd_reduce_add<S>( simd: S, values: <Self::Group as ForCopyType>::FaerOfCopy<Self::SimdUnit<S>>, ) -> Self
where S: Simd,

Source§

impl<T> ComplexFloat for Complex<T>
where T: Float + FloatConst,

Source§

type Real = T

The type used to represent the real coefficients of this complex number.
Source§

fn re(self) -> <Complex<T> as ComplexFloat>::Real

Returns the real part of the number.
Source§

fn im(self) -> <Complex<T> as ComplexFloat>::Real

Returns the imaginary part of the number.
Source§

fn abs(self) -> <Complex<T> as ComplexFloat>::Real

Returns the absolute value of the number. See also Complex::norm
Source§

fn recip(self) -> Complex<T>

Take the reciprocal (inverse) of a number, 1/x. See also Complex::finv.
Source§

fn l1_norm(&self) -> <Complex<T> as ComplexFloat>::Real

Returns the L1 norm |re| + |im| – the Manhattan distance from the origin.
Source§

fn is_nan(self) -> bool

Returns true if this value is NaN and false otherwise.
Source§

fn is_infinite(self) -> bool

Returns true if this value is positive infinity or negative infinity and false otherwise.
Source§

fn is_finite(self) -> bool

Returns true if this number is neither infinite nor NaN.
Source§

fn is_normal(self) -> bool

Returns true if the number is neither zero, infinite, subnormal, or NaN.
Source§

fn arg(self) -> <Complex<T> as ComplexFloat>::Real

Computes the argument of the number.
Source§

fn powc( self, exp: Complex<<Complex<T> as ComplexFloat>::Real>, ) -> Complex<<Complex<T> as ComplexFloat>::Real>

Raises self to a complex power.
Source§

fn exp2(self) -> Complex<T>

Returns 2^(self).
Source§

fn log(self, base: <Complex<T> as ComplexFloat>::Real) -> Complex<T>

Returns the logarithm of the number with respect to an arbitrary base.
Source§

fn log2(self) -> Complex<T>

Returns the base 2 logarithm of the number.
Source§

fn log10(self) -> Complex<T>

Returns the base 10 logarithm of the number.
Source§

fn powf(self, f: <Complex<T> as ComplexFloat>::Real) -> Complex<T>

Raises self to a real power.
Source§

fn sqrt(self) -> Complex<T>

Take the square root of a number.
Source§

fn cbrt(self) -> Complex<T>

Take the cubic root of a number.
Source§

fn exp(self) -> Complex<T>

Returns e^(self), (the exponential function).
Source§

fn expf(self, base: <Complex<T> as ComplexFloat>::Real) -> Complex<T>

Returns base^(self).
Source§

fn ln(self) -> Complex<T>

Returns the natural logarithm of the number.
Source§

fn sin(self) -> Complex<T>

Computes the sine of a number (in radians).
Source§

fn cos(self) -> Complex<T>

Computes the cosine of a number (in radians).
Source§

fn tan(self) -> Complex<T>

Computes the tangent of a number (in radians).
Source§

fn asin(self) -> Complex<T>

Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].
Source§

fn acos(self) -> Complex<T>

Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1].
Source§

fn atan(self) -> Complex<T>

Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];
Source§

fn sinh(self) -> Complex<T>

Hyperbolic sine function.
Source§

fn cosh(self) -> Complex<T>

Hyperbolic cosine function.
Source§

fn tanh(self) -> Complex<T>

Hyperbolic tangent function.
Source§

fn asinh(self) -> Complex<T>

Inverse hyperbolic sine function.
Source§

fn acosh(self) -> Complex<T>

Inverse hyperbolic cosine function.
Source§

fn atanh(self) -> Complex<T>

Inverse hyperbolic tangent function.
Source§

fn powi(self, n: i32) -> Complex<T>

Raises self to a signed integer power.
Source§

fn conj(self) -> Complex<T>

Computes the complex conjugate of the number. Read more
§

impl Conj for Complex<f64>

§

fn conj(self) -> Complex<f64>

§

impl<E> Conjugate for Complex<E>
where E: Entity + ComplexField,

§

type Conj = ComplexConj<E>

Must have the same layout as Self, and Conj::Unit must have the same layout as Unit.
§

type Canonical = Complex<E>

Must have the same layout as Self, and Canonical::Unit must have the same layout as Unit.
§

fn canonicalize(self) -> <Complex<E> as Conjugate>::Canonical

Performs the implicit conjugation operation on the given value, returning the canonical form.
Source§

impl<T> ConstOne for Complex<T>
where T: Clone + Num + ConstOne + ConstZero,

Source§

const ONE: Complex<T> = Self::ONE

The multiplicative identity element of Self, 1.
Source§

impl<T> ConstZero for Complex<T>
where T: Clone + Num + ConstZero,

Source§

const ZERO: Complex<T> = Self::ZERO

The additive identity element of Self, 0.
Source§

impl<T> Debug for Complex<T>
where T: Debug,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl<T> Default for Complex<T>
where T: Default,

Source§

fn default() -> Complex<T>

Returns the “default value” for a type. Read more
Source§

impl<T> Display for Complex<T>
where T: Display + Num + PartialOrd + Clone,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl<'a, S, D> Div<&'a ArrayBase<S, D>> for Complex<f64>
where S: Data<Elem = Complex<f64>>, D: Dimension,

Source§

type Output = ArrayBase<OwnedRepr<Complex<f64>>, D>

The resulting type after applying the / operator.
Source§

fn div( self, rhs: &ArrayBase<S, D>, ) -> <Complex<f64> as Div<&'a ArrayBase<S, D>>>::Output

Performs the / operation. Read more
Source§

impl<'a, T> Div<&'a Complex<T>> for Complex<T>
where T: Clone + Num,

Source§

type Output = Complex<T>

The resulting type after applying the / operator.
Source§

fn div(self, other: &Complex<T>) -> <Complex<T> as Div<&'a Complex<T>>>::Output

Performs the / operation. Read more
Source§

impl<'a, T> Div<&'a T> for Complex<T>
where T: Clone + Num,

Source§

type Output = Complex<T>

The resulting type after applying the / operator.
Source§

fn div(self, other: &T) -> <Complex<T> as Div<&'a T>>::Output

Performs the / operation. Read more
Source§

impl<S, D> Div<ArrayBase<S, D>> for Complex<f64>
where S: DataOwned<Elem = Complex<f64>> + DataMut, D: Dimension,

Source§

type Output = ArrayBase<S, D>

The resulting type after applying the / operator.
Source§

fn div(self, rhs: ArrayBase<S, D>) -> ArrayBase<S, D>

Performs the / operation. Read more
Source§

impl<T> Div<T> for Complex<T>
where T: Clone + Num,

Source§

type Output = Complex<T>

The resulting type after applying the / operator.
Source§

fn div(self, other: T) -> <Complex<T> as Div<T>>::Output

Performs the / operation. Read more
Source§

impl<T> Div for Complex<T>
where T: Clone + Num,

Source§

type Output = Complex<T>

The resulting type after applying the / operator.
Source§

fn div(self, other: Complex<T>) -> <Complex<T> as Div>::Output

Performs the / operation. Read more
Source§

impl<'a, T> DivAssign<&'a Complex<T>> for Complex<T>
where T: Clone + NumAssign,

Source§

fn div_assign(&mut self, other: &Complex<T>)

Performs the /= operation. Read more
Source§

impl<'a, T> DivAssign<&'a T> for Complex<T>
where T: Clone + NumAssign,

Source§

fn div_assign(&mut self, other: &T)

Performs the /= operation. Read more
Source§

impl<T> DivAssign<T> for Complex<T>
where T: Clone + NumAssign,

Source§

fn div_assign(&mut self, other: T)

Performs the /= operation. Read more
Source§

impl<T> DivAssign for Complex<T>
where T: Clone + NumAssign,

Source§

fn div_assign(&mut self, other: Complex<T>)

Performs the /= operation. Read more
§

impl<E> Entity for Complex<E>
where E: Entity,

§

const N_COMPONENTS: usize = _

§

const UNIT: <<Complex<E> as Entity>::Group as ForType>::FaerOf<()> = _

§

type Unit = <E as Entity>::Unit

§

type Index = <E as Entity>::Index

§

type SimdUnit<S: Simd> = <E as Entity>::SimdUnit<S>

§

type SimdMask<S: Simd> = <E as Entity>::SimdMask<S>

§

type SimdIndex<S: Simd> = <E as Entity>::SimdIndex<S>

§

type Group = ComplexGroup<<E as Entity>::Group>

§

type Iter<I: Iterator> = ComplexIter<<E as Entity>::Iter<I>>

§

type PrefixUnit<'a, S: Simd> = <E as Entity>::PrefixUnit<'a, S>

§

type SuffixUnit<'a, S: Simd> = <E as Entity>::SuffixUnit<'a, S>

§

type PrefixMutUnit<'a, S: Simd> = <E as Entity>::PrefixMutUnit<'a, S>

§

type SuffixMutUnit<'a, S: Simd> = <E as Entity>::SuffixMutUnit<'a, S>

§

fn faer_first<T>( group: <<Complex<E> as Entity>::Group as ForType>::FaerOf<T>, ) -> T

§

fn faer_from_units( group: <<Complex<E> as Entity>::Group as ForType>::FaerOf<<Complex<E> as Entity>::Unit>, ) -> Complex<E>

§

fn faer_into_units( self, ) -> <<Complex<E> as Entity>::Group as ForType>::FaerOf<<Complex<E> as Entity>::Unit>

§

fn faer_as_ref<T>( group: &<<Complex<E> as Entity>::Group as ForType>::FaerOf<T>, ) -> <<Complex<E> as Entity>::Group as ForType>::FaerOf<&T>

§

fn faer_as_mut<T>( group: &mut <<Complex<E> as Entity>::Group as ForType>::FaerOf<T>, ) -> <<Complex<E> as Entity>::Group as ForType>::FaerOf<&mut T>

§

fn faer_as_ptr<T>( group: *mut <<Complex<E> as Entity>::Group as ForType>::FaerOf<T>, ) -> <<Complex<E> as Entity>::Group as ForType>::FaerOf<*mut T>

§

fn faer_map_impl<T, U>( group: <<Complex<E> as Entity>::Group as ForType>::FaerOf<T>, f: &mut impl FnMut(T) -> U, ) -> <<Complex<E> as Entity>::Group as ForType>::FaerOf<U>

§

fn faer_map_with_context<Ctx, T, U>( ctx: Ctx, group: <<Complex<E> as Entity>::Group as ForType>::FaerOf<T>, f: &mut impl FnMut(Ctx, T) -> (Ctx, U), ) -> (Ctx, <<Complex<E> as Entity>::Group as ForType>::FaerOf<U>)

§

fn faer_zip<T, U>( first: <<Complex<E> as Entity>::Group as ForType>::FaerOf<T>, second: <<Complex<E> as Entity>::Group as ForType>::FaerOf<U>, ) -> <<Complex<E> as Entity>::Group as ForType>::FaerOf<(T, U)>

§

fn faer_unzip<T, U>( zipped: <<Complex<E> as Entity>::Group as ForType>::FaerOf<(T, U)>, ) -> (<<Complex<E> as Entity>::Group as ForType>::FaerOf<T>, <<Complex<E> as Entity>::Group as ForType>::FaerOf<U>)

§

fn faer_into_iter<I>( iter: <<Complex<E> as Entity>::Group as ForType>::FaerOf<I>, ) -> <Complex<E> as Entity>::Iter<<I as IntoIterator>::IntoIter>
where I: IntoIterator,

§

fn faer_map<T, U>( group: <Self::Group as ForType>::FaerOf<T>, f: impl FnMut(T) -> U, ) -> <Self::Group as ForType>::FaerOf<U>

§

fn faer_unzip2<T>( zipped: <Self::Group as ForType>::FaerOf<[T; 2]>, ) -> [<Self::Group as ForType>::FaerOf<T>; 2]

§

fn faer_unzip4<T>( zipped: <Self::Group as ForType>::FaerOf<[T; 4]>, ) -> [<Self::Group as ForType>::FaerOf<T>; 4]

§

fn faer_unzip8<T>( zipped: <Self::Group as ForType>::FaerOf<[T; 8]>, ) -> [<Self::Group as ForType>::FaerOf<T>; 8]

§

fn faer_as_arrays<const N: usize, T>( group: <Self::Group as ForType>::FaerOf<&[T]>, ) -> (<Self::Group as ForType>::FaerOf<&[[T; N]]>, <Self::Group as ForType>::FaerOf<&[T]>)

§

fn faer_as_arrays_mut<const N: usize, T>( group: <Self::Group as ForType>::FaerOf<&mut [T]>, ) -> (<Self::Group as ForType>::FaerOf<&mut [[T; N]]>, <Self::Group as ForType>::FaerOf<&mut [T]>)

§

fn faer_deref<T>( group: <Self::Group as ForType>::FaerOf<&T>, ) -> <Self::Group as ForType>::FaerOf<T>
where T: Copy,

§

fn faer_rb<'short, T>( value: <Self::Group as ForType>::FaerOf<&'short T>, ) -> <Self::Group as ForType>::FaerOf<<T as Reborrow<'short>>::Target>
where T: Reborrow<'short>,

§

fn faer_rb_mut<'short, T>( value: <Self::Group as ForType>::FaerOf<&'short mut T>, ) -> <Self::Group as ForType>::FaerOf<<T as ReborrowMut<'short>>::Target>
where T: ReborrowMut<'short>,

§

fn faer_into_const<T>( value: <Self::Group as ForType>::FaerOf<T>, ) -> <Self::Group as ForType>::FaerOf<<T as IntoConst>::Target>
where T: IntoConst,

§

fn faer_copy<T>( x: &<Self::Group as ForType>::FaerOf<T>, ) -> <Self::Group as ForType>::FaerOf<T>
where T: Copy,

Source§

impl<'a, T> From<&'a T> for Complex<T>
where T: Clone + Num,

Source§

fn from(re: &T) -> Complex<T>

Converts to this type from the input type.
Source§

impl<T> From<T> for Complex<T>
where T: Clone + Num,

Source§

fn from(re: T) -> Complex<T>

Converts to this type from the input type.
§

impl From<c64> for Complex<f64>

§

fn from(value: c64) -> Complex<f64>

Converts to this type from the input type.
Source§

impl<T> FromPrimitive for Complex<T>
where T: FromPrimitive + Num,

Source§

fn from_usize(n: usize) -> Option<Complex<T>>

Converts a usize to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
Source§

fn from_isize(n: isize) -> Option<Complex<T>>

Converts an isize to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
Source§

fn from_u8(n: u8) -> Option<Complex<T>>

Converts an u8 to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
Source§

fn from_u16(n: u16) -> Option<Complex<T>>

Converts an u16 to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
Source§

fn from_u32(n: u32) -> Option<Complex<T>>

Converts an u32 to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
Source§

fn from_u64(n: u64) -> Option<Complex<T>>

Converts an u64 to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
Source§

fn from_i8(n: i8) -> Option<Complex<T>>

Converts an i8 to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
Source§

fn from_i16(n: i16) -> Option<Complex<T>>

Converts an i16 to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
Source§

fn from_i32(n: i32) -> Option<Complex<T>>

Converts an i32 to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
Source§

fn from_i64(n: i64) -> Option<Complex<T>>

Converts an i64 to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
Source§

fn from_u128(n: u128) -> Option<Complex<T>>

Converts an u128 to return an optional value of this type. If the value cannot be represented by this type, then None is returned. Read more
Source§

fn from_i128(n: i128) -> Option<Complex<T>>

Converts an i128 to return an optional value of this type. If the value cannot be represented by this type, then None is returned. Read more
Source§

fn from_f32(n: f32) -> Option<Complex<T>>

Converts a f32 to return an optional value of this type. If the value cannot be represented by this type, then None is returned.
Source§

fn from_f64(n: f64) -> Option<Complex<T>>

Converts a f64 to return an optional value of this type. If the value cannot be represented by this type, then None is returned. Read more
Source§

impl<T> FromStr for Complex<T>
where T: FromStr + Num + Clone,

Source§

fn from_str(s: &str) -> Result<Complex<T>, <Complex<T> as FromStr>::Err>

Parses a +/- bi; ai +/- b; a; or bi where a and b are of type T

Source§

type Err = ParseComplexError<<T as FromStr>::Err>

The associated error which can be returned from parsing.
Source§

impl<T> Hash for Complex<T>
where T: Hash,

Source§

fn hash<__H>(&self, state: &mut __H)
where __H: Hasher,

Feeds this value into the given Hasher. Read more
1.3.0 · Source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
Source§

impl<T> Inv for Complex<T>
where T: Clone + Num + Neg<Output = T>,

Source§

type Output = Complex<T>

The result after applying the operator.
Source§

fn inv(self) -> <Complex<T> as Inv>::Output

Returns the multiplicative inverse of self. Read more
Source§

impl<T> LowerExp for Complex<T>
where T: LowerExp + Num + PartialOrd + Clone,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl<T> LowerHex for Complex<T>
where T: LowerHex + Num + PartialOrd + Clone,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl<'a, S, D> Mul<&'a ArrayBase<S, D>> for Complex<f64>
where S: Data<Elem = Complex<f64>>, D: Dimension,

Source§

type Output = ArrayBase<OwnedRepr<Complex<f64>>, D>

The resulting type after applying the * operator.
Source§

fn mul( self, rhs: &ArrayBase<S, D>, ) -> <Complex<f64> as Mul<&'a ArrayBase<S, D>>>::Output

Performs the * operation. Read more
Source§

impl<'a, T> Mul<&'a Complex<T>> for Complex<T>
where T: Clone + Num,

Source§

type Output = Complex<T>

The resulting type after applying the * operator.
Source§

fn mul(self, other: &Complex<T>) -> <Complex<T> as Mul<&'a Complex<T>>>::Output

Performs the * operation. Read more
Source§

impl<'a, T> Mul<&'a T> for Complex<T>
where T: Clone + Num,

Source§

type Output = Complex<T>

The resulting type after applying the * operator.
Source§

fn mul(self, other: &T) -> <Complex<T> as Mul<&'a T>>::Output

Performs the * operation. Read more
Source§

impl<S, D> Mul<ArrayBase<S, D>> for Complex<f64>
where S: DataOwned<Elem = Complex<f64>> + DataMut, D: Dimension,

Source§

type Output = ArrayBase<S, D>

The resulting type after applying the * operator.
Source§

fn mul(self, rhs: ArrayBase<S, D>) -> ArrayBase<S, D>

Performs the * operation. Read more
Source§

impl<T> Mul<T> for Complex<T>
where T: Clone + Num,

Source§

type Output = Complex<T>

The resulting type after applying the * operator.
Source§

fn mul(self, other: T) -> <Complex<T> as Mul<T>>::Output

Performs the * operation. Read more
Source§

impl<T> Mul for Complex<T>
where T: Clone + Num,

Source§

type Output = Complex<T>

The resulting type after applying the * operator.
Source§

fn mul(self, other: Complex<T>) -> <Complex<T> as Mul>::Output

Performs the * operation. Read more
Source§

impl<T> MulAdd for Complex<T>
where T: Clone + Num + MulAdd<Output = T>,

Source§

type Output = Complex<T>

The resulting type after applying the fused multiply-add.
Source§

fn mul_add(self, other: Complex<T>, add: Complex<T>) -> Complex<T>

Performs the fused multiply-add operation (self * a) + b
Source§

impl<'a, 'b, T> MulAddAssign<&'a Complex<T>, &'b Complex<T>> for Complex<T>

Source§

fn mul_add_assign(&mut self, other: &Complex<T>, add: &Complex<T>)

Performs the fused multiply-add assignment operation *self = (*self * a) + b
Source§

impl<T> MulAddAssign for Complex<T>

Source§

fn mul_add_assign(&mut self, other: Complex<T>, add: Complex<T>)

Performs the fused multiply-add assignment operation *self = (*self * a) + b
Source§

impl<'a, T> MulAssign<&'a Complex<T>> for Complex<T>
where T: Clone + NumAssign,

Source§

fn mul_assign(&mut self, other: &Complex<T>)

Performs the *= operation. Read more
Source§

impl<'a, T> MulAssign<&'a T> for Complex<T>
where T: Clone + NumAssign,

Source§

fn mul_assign(&mut self, other: &T)

Performs the *= operation. Read more
Source§

impl<T> MulAssign<T> for Complex<T>
where T: Clone + NumAssign,

Source§

fn mul_assign(&mut self, other: T)

Performs the *= operation. Read more
Source§

impl<T> MulAssign for Complex<T>
where T: Clone + NumAssign,

Source§

fn mul_assign(&mut self, other: Complex<T>)

Performs the *= operation. Read more
Source§

impl<T> Neg for Complex<T>
where T: Clone + Num + Neg<Output = T>,

Source§

type Output = Complex<T>

The resulting type after applying the - operator.
Source§

fn neg(self) -> <Complex<T> as Neg>::Output

Performs the unary - operation. Read more
Source§

impl<T> Num for Complex<T>
where T: Num + Clone,

Source§

fn from_str_radix( s: &str, radix: u32, ) -> Result<Complex<T>, <Complex<T> as Num>::FromStrRadixErr>

Parses a +/- bi; ai +/- b; a; or bi where a and b are of type T

radix must be <= 18; larger radix would include i and j as digits, which cannot be supported.

The conversion returns an error if 18 <= radix <= 36; it panics if radix > 36.

The elements of T are parsed using Num::from_str_radix too, and errors (or panics) from that are reflected here as well.

Source§

type FromStrRadixErr = ParseComplexError<<T as Num>::FromStrRadixErr>

Source§

impl<T> NumCast for Complex<T>
where T: NumCast + Num,

Source§

fn from<U>(n: U) -> Option<Complex<T>>
where U: ToPrimitive,

Creates a number from another value that can be converted into a primitive via the ToPrimitive trait. If the source value cannot be represented by the target type, then None is returned. Read more
Source§

impl<T> Octal for Complex<T>
where T: Octal + Num + PartialOrd + Clone,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl<T> One for Complex<T>
where T: Clone + Num,

Source§

fn one() -> Complex<T>

Returns the multiplicative identity element of Self, 1. Read more
Source§

fn is_one(&self) -> bool

Returns true if self is equal to the multiplicative identity. Read more
Source§

fn set_one(&mut self)

Sets self to the multiplicative identity element of Self, 1.
Source§

impl<T> PartialEq for Complex<T>
where T: PartialEq,

Source§

fn eq(&self, other: &Complex<T>) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl<'b, T> Pow<&'b Complex<T>> for Complex<T>
where T: Float,

Source§

type Output = Complex<T>

The result after applying the operator.
Source§

fn pow(self, _: &'b Complex<T>) -> <Complex<T> as Pow<&'b Complex<T>>>::Output

Returns self to the power rhs. Read more
Source§

impl<'b, T> Pow<&'b f32> for Complex<T>
where T: Float, f32: Into<T>,

Source§

type Output = Complex<T>

The result after applying the operator.
Source§

fn pow(self, _: &f32) -> <Complex<T> as Pow<&'b f32>>::Output

Returns self to the power rhs. Read more
Source§

impl<'b, T> Pow<&'b f64> for Complex<T>
where T: Float, f64: Into<T>,

Source§

type Output = Complex<T>

The result after applying the operator.
Source§

fn pow(self, _: &f64) -> <Complex<T> as Pow<&'b f64>>::Output

Returns self to the power rhs. Read more
Source§

impl<T> Pow<Complex<T>> for Complex<T>
where T: Float,

Source§

type Output = Complex<T>

The result after applying the operator.
Source§

fn pow(self, exp: Complex<T>) -> <Complex<T> as Pow<Complex<T>>>::Output

Returns self to the power rhs. Read more
Source§

impl<T> Pow<f32> for Complex<T>
where T: Float, f32: Into<T>,

Source§

type Output = Complex<T>

The result after applying the operator.
Source§

fn pow(self, exp: f32) -> <Complex<T> as Pow<f32>>::Output

Returns self to the power rhs. Read more
Source§

impl<T> Pow<f64> for Complex<T>
where T: Float, f64: Into<T>,

Source§

type Output = Complex<T>

The result after applying the operator.
Source§

fn pow(self, exp: f64) -> <Complex<T> as Pow<f64>>::Output

Returns self to the power rhs. Read more
Source§

impl<'a, T> Product<&'a Complex<T>> for Complex<T>
where T: 'a + Num + Clone,

Source§

fn product<I>(iter: I) -> Complex<T>
where I: Iterator<Item = &'a Complex<T>>,

Takes an iterator and generates Self from the elements by multiplying the items.
Source§

impl<T> Product for Complex<T>
where T: Num + Clone,

Source§

fn product<I>(iter: I) -> Complex<T>
where I: Iterator<Item = Complex<T>>,

Takes an iterator and generates Self from the elements by multiplying the items.
Source§

impl<'a, T> Rem<&'a Complex<T>> for Complex<T>
where T: Clone + Num,

Source§

type Output = Complex<T>

The resulting type after applying the % operator.
Source§

fn rem(self, other: &Complex<T>) -> <Complex<T> as Rem<&'a Complex<T>>>::Output

Performs the % operation. Read more
Source§

impl<'a, T> Rem<&'a T> for Complex<T>
where T: Clone + Num,

Source§

type Output = Complex<T>

The resulting type after applying the % operator.
Source§

fn rem(self, other: &T) -> <Complex<T> as Rem<&'a T>>::Output

Performs the % operation. Read more
Source§

impl<T> Rem<T> for Complex<T>
where T: Clone + Num,

Source§

type Output = Complex<T>

The resulting type after applying the % operator.
Source§

fn rem(self, other: T) -> <Complex<T> as Rem<T>>::Output

Performs the % operation. Read more
Source§

impl<T> Rem for Complex<T>
where T: Clone + Num,

Source§

type Output = Complex<T>

The resulting type after applying the % operator.
Source§

fn rem(self, modulus: Complex<T>) -> <Complex<T> as Rem>::Output

Performs the % operation. Read more
Source§

impl<'a, T> RemAssign<&'a Complex<T>> for Complex<T>
where T: Clone + NumAssign,

Source§

fn rem_assign(&mut self, other: &Complex<T>)

Performs the %= operation. Read more
Source§

impl<'a, T> RemAssign<&'a T> for Complex<T>
where T: Clone + NumAssign,

Source§

fn rem_assign(&mut self, other: &T)

Performs the %= operation. Read more
Source§

impl<T> RemAssign<T> for Complex<T>
where T: Clone + NumAssign,

Source§

fn rem_assign(&mut self, other: T)

Performs the %= operation. Read more
Source§

impl<T> RemAssign for Complex<T>
where T: Clone + NumAssign,

Source§

fn rem_assign(&mut self, modulus: Complex<T>)

Performs the %= operation. Read more
Source§

impl<'a, S, D> Sub<&'a ArrayBase<S, D>> for Complex<f64>
where S: Data<Elem = Complex<f64>>, D: Dimension,

Source§

type Output = ArrayBase<OwnedRepr<Complex<f64>>, D>

The resulting type after applying the - operator.
Source§

fn sub( self, rhs: &ArrayBase<S, D>, ) -> <Complex<f64> as Sub<&'a ArrayBase<S, D>>>::Output

Performs the - operation. Read more
Source§

impl<'a, T> Sub<&'a Complex<T>> for Complex<T>
where T: Clone + Num,

Source§

type Output = Complex<T>

The resulting type after applying the - operator.
Source§

fn sub(self, other: &Complex<T>) -> <Complex<T> as Sub<&'a Complex<T>>>::Output

Performs the - operation. Read more
Source§

impl<'a, T> Sub<&'a T> for Complex<T>
where T: Clone + Num,

Source§

type Output = Complex<T>

The resulting type after applying the - operator.
Source§

fn sub(self, other: &T) -> <Complex<T> as Sub<&'a T>>::Output

Performs the - operation. Read more
Source§

impl<S, D> Sub<ArrayBase<S, D>> for Complex<f64>
where S: DataOwned<Elem = Complex<f64>> + DataMut, D: Dimension,

Source§

type Output = ArrayBase<S, D>

The resulting type after applying the - operator.
Source§

fn sub(self, rhs: ArrayBase<S, D>) -> ArrayBase<S, D>

Performs the - operation. Read more
Source§

impl<T> Sub<T> for Complex<T>
where T: Clone + Num,

Source§

type Output = Complex<T>

The resulting type after applying the - operator.
Source§

fn sub(self, other: T) -> <Complex<T> as Sub<T>>::Output

Performs the - operation. Read more
Source§

impl<T> Sub for Complex<T>
where T: Clone + Num,

Source§

type Output = Complex<T>

The resulting type after applying the - operator.
Source§

fn sub(self, other: Complex<T>) -> <Complex<T> as Sub>::Output

Performs the - operation. Read more
Source§

impl<'a, T> SubAssign<&'a Complex<T>> for Complex<T>
where T: Clone + NumAssign,

Source§

fn sub_assign(&mut self, other: &Complex<T>)

Performs the -= operation. Read more
Source§

impl<'a, T> SubAssign<&'a T> for Complex<T>
where T: Clone + NumAssign,

Source§

fn sub_assign(&mut self, other: &T)

Performs the -= operation. Read more
Source§

impl<T> SubAssign<T> for Complex<T>
where T: Clone + NumAssign,

Source§

fn sub_assign(&mut self, other: T)

Performs the -= operation. Read more
Source§

impl<T> SubAssign for Complex<T>
where T: Clone + NumAssign,

Source§

fn sub_assign(&mut self, other: Complex<T>)

Performs the -= operation. Read more
Source§

impl<'a, T> Sum<&'a Complex<T>> for Complex<T>
where T: 'a + Num + Clone,

Source§

fn sum<I>(iter: I) -> Complex<T>
where I: Iterator<Item = &'a Complex<T>>,

Takes an iterator and generates Self from the elements by “summing up” the items.
Source§

impl<T> Sum for Complex<T>
where T: Num + Clone,

Source§

fn sum<I>(iter: I) -> Complex<T>
where I: Iterator<Item = Complex<T>>,

Takes an iterator and generates Self from the elements by “summing up” the items.
Source§

impl<T> ToPrimitive for Complex<T>
where T: ToPrimitive + Num,

Source§

fn to_usize(&self) -> Option<usize>

Converts the value of self to a usize. If the value cannot be represented by a usize, then None is returned.
Source§

fn to_isize(&self) -> Option<isize>

Converts the value of self to an isize. If the value cannot be represented by an isize, then None is returned.
Source§

fn to_u8(&self) -> Option<u8>

Converts the value of self to a u8. If the value cannot be represented by a u8, then None is returned.
Source§

fn to_u16(&self) -> Option<u16>

Converts the value of self to a u16. If the value cannot be represented by a u16, then None is returned.
Source§

fn to_u32(&self) -> Option<u32>

Converts the value of self to a u32. If the value cannot be represented by a u32, then None is returned.
Source§

fn to_u64(&self) -> Option<u64>

Converts the value of self to a u64. If the value cannot be represented by a u64, then None is returned.
Source§

fn to_i8(&self) -> Option<i8>

Converts the value of self to an i8. If the value cannot be represented by an i8, then None is returned.
Source§

fn to_i16(&self) -> Option<i16>

Converts the value of self to an i16. If the value cannot be represented by an i16, then None is returned.
Source§

fn to_i32(&self) -> Option<i32>

Converts the value of self to an i32. If the value cannot be represented by an i32, then None is returned.
Source§

fn to_i64(&self) -> Option<i64>

Converts the value of self to an i64. If the value cannot be represented by an i64, then None is returned.
Source§

fn to_u128(&self) -> Option<u128>

Converts the value of self to a u128. If the value cannot be represented by a u128 (u64 under the default implementation), then None is returned. Read more
Source§

fn to_i128(&self) -> Option<i128>

Converts the value of self to an i128. If the value cannot be represented by an i128 (i64 under the default implementation), then None is returned. Read more
Source§

fn to_f32(&self) -> Option<f32>

Converts the value of self to an f32. Overflows may map to positive or negative inifinity, otherwise None is returned if the value cannot be represented by an f32.
Source§

fn to_f64(&self) -> Option<f64>

Converts the value of self to an f64. Overflows may map to positive or negative inifinity, otherwise None is returned if the value cannot be represented by an f64. Read more
Source§

impl<T> UpperExp for Complex<T>
where T: UpperExp + Num + PartialOrd + Clone,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl<T> UpperHex for Complex<T>
where T: UpperHex + Num + PartialOrd + Clone,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl<T> Zero for Complex<T>
where T: Clone + Num,

Source§

fn zero() -> Complex<T>

Returns the additive identity element of Self, 0. Read more
Source§

fn is_zero(&self) -> bool

Returns true if self is equal to the additive identity.
Source§

fn set_zero(&mut self)

Sets self to the additive identity element of Self, 0.
Source§

impl<T> Zeroable for Complex<T>
where T: Zeroable,

§

fn zeroed() -> Self

Source§

impl<T> Copy for Complex<T>
where T: Copy,

Source§

impl<T> Eq for Complex<T>
where T: Eq,

Source§

impl<T> Pod for Complex<T>
where T: Pod,

Source§

impl ScalarOperand for Complex<f64>

Source§

impl<T> StructuralPartialEq for Complex<T>