logo
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
use crate::scalar::macros::*;
use crate::scalar::Rfloat;
use crate::*;
use std::convert::TryFrom;
use std::ops::{Add, Div, Mul, Neg, Sub};
use std::ops::{AddAssign, DivAssign, MulAssign, SubAssign};

#[allow(non_camel_case_types)]
pub type c64 = num_complex::Complex<f64>;

impl CanBeNA for c64 {
    fn is_na(&self) -> bool {
        unsafe { R_IsNA(self.re) != 0 }
    }

    fn na() -> c64 {
        unsafe { c64::new(R_NaReal, R_NaReal) }
    }
}

/// Rcplx is a wrapper for f64 in the context of an R's complex vector.
///
/// Rcplx has a special NA value, obtained from R headers via R_NaReal.
///
/// Rcplx has the same footprint as R's complex value allowing us to use it in zero copy slices.
#[derive(Debug)]
pub struct Rcplx(c64);

impl Rcplx {
    gen_impl!(Rcplx, c64);

    pub fn is_nan(&self) -> bool {
        self.0.is_nan()
    }

    pub fn is_infinite(&self) -> bool {
        self.0.is_infinite()
    }

    pub fn re(&self) -> Rfloat {
        Rfloat::from(self.0.re)
    }

    pub fn im(&self) -> Rfloat {
        Rfloat::from(self.0.im)
    }
}

impl From<f64> for Rcplx {
    fn from(val: f64) -> Self {
        Rcplx(c64::from(val))
    }
}

impl From<(f64, f64)> for Rcplx {
    fn from(val: (f64, f64)) -> Self {
        Rcplx(c64::new(val.0, val.1))
    }
}

impl From<(Rfloat, Rfloat)> for Rcplx {
    fn from(val: (Rfloat, Rfloat)) -> Self {
        Rcplx(c64::new(val.0.inner(), val.1.inner()))
    }
}

impl From<Rfloat> for Rcplx {
    fn from(val: Rfloat) -> Self {
        Rcplx(c64::from(val.inner()))
    }
}

impl From<Rcomplex> for Rcplx {
    fn from(val: Rcomplex) -> Self {
        Rcplx(c64::new(val.r, val.i))
    }
}

impl From<Rcplx> for Option<c64> {
    fn from(val: Rcplx) -> Self {
        if val.is_na() {
            None
        } else {
            Some(c64::new(val.re().inner(), val.im().inner()))
        }
    }
}

// `NA_real_` is a `NaN` with specific bit representation.
// Check that underlying `f64` is `NA_real_`.
gen_trait_impl!(Rcplx, c64, |x: &Rcplx| x.inner().re.is_na(), c64::na());
gen_from_primitive!(Rcplx, c64);
// gen_from_scalar!(Rcplx, c64);
gen_sum_iter!(Rcplx, 0f64);

// Generate binary ops for +, -, * and /
gen_binop!(
    Rcplx,
    c64,
    Add,
    |lhs: c64, rhs: c64| Some(lhs + rhs),
    "Add two Rcplx values or an option of c64."
);
gen_binop!(
    Rcplx,
    c64,
    Sub,
    |lhs: c64, rhs: c64| Some(lhs - rhs),
    "Subtract two Rcplx values or an option of c64."
);
gen_binop!(
    Rcplx,
    c64,
    Mul,
    |lhs: c64, rhs: c64| Some(lhs * rhs),
    "Multiply two Rcplx values or an option of c64."
);
gen_binop!(
    Rcplx,
    c64,
    Div,
    |lhs: c64, rhs: c64| Some(lhs / rhs),
    "Divide two Rcplx values or an option of c64."
);
gen_binopassign!(
    Rcplx,
    c64,
    AddAssign,
    |lhs: c64, rhs: c64| Some(lhs + rhs),
    "Add two Rcplx values or an option of c64, modifying the left-hand side in place. Overflows to NA."
);
gen_binopassign!(
    Rcplx,
    c64,
    SubAssign,
    |lhs: c64, rhs: c64| Some(lhs - rhs),
    "Subtract two Rcplx values or an option of c64, modifying the left-hand side in place. Overflows to NA."
);
gen_binopassign!(
    Rcplx,
    c64,
    MulAssign,
    |lhs: c64, rhs: c64| Some(lhs * rhs),
    "Multiply two Rcplx values or an option of c64, modifying the left-hand side in place. Overflows to NA."
);
gen_binopassign!(
    Rcplx,
    c64,
    DivAssign,
    |lhs: c64, rhs: c64| Some(lhs / rhs),
    "Divide two Rcplx values or an option of c64, modifying the left-hand side in place. Overflows to NA."
);

// Generate unary ops for -, !
gen_unop!(Rcplx, Neg, |lhs: c64| Some(-lhs), "Negate a Rcplx value.");

impl PartialEq<f64> for Rcplx {
    fn eq(&self, other: &f64) -> bool {
        self.re().inner() == *other && self.im() == 0.0
    }
}