extendr_api/ownership.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
//! Maintain ownership of R objects.
//!
//! This provides the functions `protect` and `unprotect`.
//! A single preserved vector holds ownership of all protected objects.
//!
//! Objects are reference counted, so multiple calls are possible,
//! unlike `R_PreserveObject`.
//!
//! This module exports two functions, `protect(sexp)` and `unprotect(sexp)`.
use once_cell::sync::Lazy;
use std::collections::hash_map::{Entry, HashMap};
use std::sync::Mutex;
use libR_sys::{
R_NilValue, R_PreserveObject, R_ReleaseObject, R_xlen_t, Rf_allocVector, Rf_protect,
Rf_unprotect, LENGTH, SET_VECTOR_ELT, SEXP, SEXPTYPE, VECTOR_ELT,
};
mod send_sexp {
//! Provide a wrapper around R's pointer type `SEXP` that is `Send`.
//!
//! This can lead to soundness issues, therefore accessing the `SEXP` has
//! to happen through the unsafe method [`SendSEXP::inner`].
//!
use libR_sys::SEXP;
/// A wrapper around R's pointer type `SEXP` that is `Send`.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct SendSEXP(SEXP);
impl From<SEXP> for SendSEXP {
fn from(value: SEXP) -> Self {
Self(value)
}
}
// Allows SendSEXP to be sent between threads even though unsafe
// Requires that the SEXP is not accessed concurrently.
unsafe impl Send for SendSEXP {}
impl SendSEXP {
/// Get the inner `SEXP`
pub unsafe fn inner(&self) -> SEXP {
self.0
}
}
}
use self::send_sexp::SendSEXP;
static OWNERSHIP: Lazy<Mutex<Ownership>> = Lazy::new(|| Mutex::new(Ownership::new()));
pub(crate) unsafe fn protect(sexp: SEXP) {
let mut own = OWNERSHIP.lock().expect("protect failed");
own.protect(sexp);
}
pub(crate) unsafe fn unprotect(sexp: SEXP) {
let mut own = OWNERSHIP.lock().expect("unprotect failed");
own.unprotect(sexp);
}
pub const INITIAL_PRESERVATION_SIZE: usize = 100000;
pub const EXTRA_PRESERVATION_SIZE: usize = 100000;
// `Object` is a manual reference counting mechanism that is used for each SEXP.
// `refcount` is the number of times the SEXP is accessed.
// `index` is the index of the SEXP in the preservation vector.
#[derive(Debug)]
struct Object {
refcount: usize,
index: usize,
}
// A reference counted object with an index in the preservation vector.
#[derive(Debug)]
struct Ownership {
// A growable vector containing all owned objects.
preservation: SendSEXP,
// An incrementing count of objects through the vector.
cur_index: usize,
// The size of the vector.
max_index: usize,
// A hash map from SEXP address to object.
objects: HashMap<SendSEXP, Object>,
}
impl Ownership {
fn new() -> Self {
unsafe {
let preservation =
Rf_allocVector(SEXPTYPE::VECSXP, INITIAL_PRESERVATION_SIZE as R_xlen_t);
R_PreserveObject(preservation);
Ownership {
preservation: preservation.into(),
cur_index: 0,
max_index: INITIAL_PRESERVATION_SIZE,
objects: HashMap::with_capacity(INITIAL_PRESERVATION_SIZE),
}
}
}
// Garbage collect the tracking structures.
unsafe fn garbage_collect(&mut self) {
let new_size = self.cur_index * 2 + EXTRA_PRESERVATION_SIZE;
let new_sexp = Rf_allocVector(SEXPTYPE::VECSXP, new_size as R_xlen_t);
R_PreserveObject(new_sexp);
let old_sexp = self.preservation.inner();
let mut new_objects = HashMap::with_capacity(new_size);
// copy non-null elements to new vector and hashmap.
let mut j = 0;
for (addr, object) in self.objects.iter() {
if object.refcount != 0 {
SET_VECTOR_ELT(new_sexp, j as R_xlen_t, addr.inner());
new_objects.insert(
addr.clone(),
Object {
refcount: object.refcount,
index: j,
},
);
j += 1;
}
}
R_ReleaseObject(old_sexp);
self.preservation = (new_sexp).into();
self.cur_index = j;
self.max_index = new_size;
self.objects = new_objects;
}
unsafe fn protect(&mut self, sexp: SEXP) {
// This protects the SEXP. Is this necessary?
// Because the Ownership object already protects an SEXP in the `preservation` field.
// The new `sexp` is inserted into the preservation list via `SET_VECTOR_ELT` below.
// If list is protected then so are all of its elements.
//
// > Protecting an R object automatically protects all the R objects
// > pointed to in the corresponding SEXPREC, for example all elements
// > of a protected list are automatically protected." 5.9.1
Rf_protect(sexp);
if self.cur_index == self.max_index {
self.garbage_collect();
}
let send_sexp = sexp.into();
let Ownership {
ref mut preservation,
ref mut cur_index,
ref mut max_index,
ref mut objects,
} = *self;
let mut entry = objects.entry(send_sexp);
let preservation_sexp = preservation.inner();
match entry {
Entry::Occupied(ref mut occupied) => {
if occupied.get().refcount == 0 {
// Address re-used - re-set the sexp.
SET_VECTOR_ELT(preservation_sexp, occupied.get().index as R_xlen_t, sexp);
}
occupied.get_mut().refcount += 1;
}
Entry::Vacant(vacant) => {
let index = *cur_index;
SET_VECTOR_ELT(preservation_sexp, index as R_xlen_t, sexp);
*cur_index += 1;
assert!(index != *max_index);
let refcount = 1;
vacant.insert(Object { refcount, index });
}
}
Rf_unprotect(1);
}
pub unsafe fn unprotect(&mut self, sexp: SEXP) {
let send_sexp = sexp.into();
let Ownership {
preservation,
cur_index: _,
max_index: _,
ref mut objects,
} = self;
let mut entry = objects.entry(send_sexp);
match entry {
Entry::Occupied(ref mut occupied) => {
let object = occupied.get_mut();
if object.refcount == 0 {
panic!("Attempt to unprotect an already unprotected object.")
} else {
object.refcount -= 1;
if object.refcount == 0 {
// Clear the preservation vector, but keep the hash table entry.
// It is hard to clear the hash table entry here because we don't
// have a ref to objects anymore and it is faster to clear them up en-masse.
let preservation_sexp = preservation.inner();
SET_VECTOR_ELT(preservation_sexp, object.index as R_xlen_t, R_NilValue);
}
}
}
Entry::Vacant(_) => {
panic!("Attempt to unprotect a never protected object.")
}
}
}
#[allow(dead_code)]
unsafe fn ref_count(&mut self, sexp: SEXP) -> usize {
let Ownership {
preservation: _,
cur_index: _,
max_index: _,
ref mut objects,
} = *self;
let mut entry = objects.entry(sexp.into());
match entry {
Entry::Occupied(ref mut occupied) => occupied.get().refcount,
Entry::Vacant(_) => 0,
}
}
// Check the consistency of the model.
#[allow(dead_code)]
unsafe fn check_objects(&mut self) {
let preservation_sexp = self.preservation.inner();
assert_eq!(self.max_index, LENGTH(preservation_sexp) as usize);
// println!("\ncheck");
for (addr, object) in self.objects.iter() {
assert!(object.index < self.max_index);
let elt = VECTOR_ELT(preservation_sexp, object.index as R_xlen_t);
// println!(
// "refcount={:?} index={:?} elt={:?}",
// object.refcount, object.index, elt
// );
if object.refcount != 0 {
// A non-zero refcount implies the object is in the vector.
assert_eq!(elt, addr.inner());
} else {
// A zero refcount implies the object is NULL in the vector.
assert_eq!(elt, R_NilValue);
}
}
// println!("check 2");
for i in 0..self.max_index {
let elt = VECTOR_ELT(preservation_sexp, i as R_xlen_t);
if elt == R_NilValue {
assert_eq!(self.ref_count(elt), 0);
} else {
assert!(self.ref_count(elt) != 0);
}
}
// println!("/check");
}
}
#[cfg(test)]
mod test {
use super::*;
use crate as extendr_api;
use crate::*;
use libR_sys::{Rf_ScalarInteger, Rf_protect};
#[test]
fn basic_test() {
test! {
single_threaded(|| unsafe {
{
let mut own = OWNERSHIP.lock().expect("lock failed");
own.check_objects();
}
let sexp1 = Rf_protect(Rf_ScalarInteger(1));
let sexp2 = Rf_protect(Rf_ScalarInteger(2));
protect(sexp1);
{
let mut own = OWNERSHIP.lock().expect("lock failed");
own.check_objects();
assert_eq!(own.ref_count(sexp1), 1);
assert_eq!(own.ref_count(sexp2), 0);
}
protect(sexp1);
{
let mut own = OWNERSHIP.lock().expect("lock failed");
own.check_objects();
assert_eq!(own.ref_count(sexp1), 2);
assert_eq!(own.ref_count(sexp2), 0);
}
unprotect(sexp1);
{
let mut own = OWNERSHIP.lock().expect("lock failed");
own.check_objects();
assert_eq!(own.ref_count(sexp1), 1);
assert_eq!(own.ref_count(sexp2), 0);
}
unprotect(sexp1);
{
let mut own = OWNERSHIP.lock().expect("lock failed");
own.check_objects();
assert_eq!(own.ref_count(sexp1), 0);
assert_eq!(own.ref_count(sexp2), 0);
}
protect(sexp2);
{
let mut own = OWNERSHIP.lock().expect("lock failed");
own.check_objects();
assert_eq!(own.ref_count(sexp1), 0);
assert_eq!(own.ref_count(sexp2), 1);
}
protect(sexp1);
{
let mut own = OWNERSHIP.lock().expect("lock failed");
own.check_objects();
assert_eq!(own.ref_count(sexp1), 1);
assert_eq!(own.ref_count(sexp2), 1);
}
Rf_unprotect(2);
});
}
}
#[test]
fn collection_test() {
test! {
single_threaded(|| unsafe {
{
let mut own = OWNERSHIP.lock().expect("protect failed");
own.check_objects();
}
// Force a garbage collect.
let test_size = INITIAL_PRESERVATION_SIZE + EXTRA_PRESERVATION_SIZE * 5;
// Make some test objects.
let sexp_pres = Rf_allocVector(SEXPTYPE::VECSXP, test_size as R_xlen_t);
Rf_protect(sexp_pres);
let sexps = (0..test_size).map(|i| {
let sexp = Rf_ScalarInteger(1);
SET_VECTOR_ELT(sexp_pres, i as R_xlen_t, sexp);
sexp
}).collect::<Vec<_>>();
for (i, sexp) in sexps.iter().enumerate() {
protect(*sexp);
if i % 2 == 0 {
unprotect(*sexp);
}
}
{
let mut own = OWNERSHIP.lock().expect("protect failed");
own.check_objects();
own.garbage_collect();
own.check_objects();
}
Rf_unprotect(1);
});
}
}
}