1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
use std::fmt::{Debug, Display, Formatter};
use std::num::FpCategory;

#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub enum ConversionError {
    Underflow,
    Overflow,
    NotIntegerish,
}

impl Display for ConversionError {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        match self {
            ConversionError::Underflow => write!(f, "underflow"),
            ConversionError::Overflow => write!(f, "overflow"),
            ConversionError::NotIntegerish => write!(f, "not a whole number"),
        }
    }
}

pub(crate) trait FloatToInt<T: Sized> {
    fn try_into_int(&self) -> Result<T, ConversionError>
    where
        Self: Sized;
}

macro_rules! impl_into_integerish {
    ($float_type:ty, $int_type:ty) => {
        impl FloatToInt<$int_type> for $float_type {
            fn try_into_int(&self) -> Result<$int_type, ConversionError> {
                match self.classify() {
                    FpCategory::Nan | FpCategory::Subnormal => Err(ConversionError::NotIntegerish),
                    FpCategory::Zero => Ok(<$int_type>::default()),
                    FpCategory::Infinite if self.is_sign_positive() => {
                        Err(ConversionError::Overflow)
                    }
                    FpCategory::Infinite => Err(ConversionError::Underflow),
                    FpCategory::Normal => {
                        let truncated_value = self.trunc();
                        const MIN_VALUE: $float_type = <$int_type>::MIN as $float_type;
                        if truncated_value < MIN_VALUE {
                            return Err(ConversionError::Underflow);
                        }
                        const MAX_VALUE: $float_type = <$int_type>::MAX as $float_type;
                        if truncated_value > MAX_VALUE {
                            return Err(ConversionError::Overflow);
                        }
                        if !truncated_value.eq(self) {
                            return Err(ConversionError::NotIntegerish);
                        }
                        return Ok(truncated_value as $int_type);
                    }
                }
            }
        }
    };
}

impl_into_integerish!(f64, isize);
impl_into_integerish!(f64, usize);
impl_into_integerish!(f64, i128);
impl_into_integerish!(f64, u128);
impl_into_integerish!(f64, i64);
impl_into_integerish!(f64, u64);
impl_into_integerish!(f64, i32);
impl_into_integerish!(f64, u32);
impl_into_integerish!(f64, i16);
impl_into_integerish!(f64, u16);
impl_into_integerish!(f64, i8);
impl_into_integerish!(f64, u8);

#[cfg(test)]
mod try_into_int_tests {
    use crate as extendr_api;
    use crate::conversions::try_into_int::{ConversionError, FloatToInt};
    use crate::{test, CanBeNA};

    type ConversionResult<T, E> = std::result::Result<T, E>;

    #[test]
    fn test_exact_zero() {
        let value = 0.0;
        let int_value: ConversionResult<i32, _> = value.try_into_int();
        assert_eq!(int_value, Ok(0));
    }

    #[test]
    fn test_exact_negative_zero() {
        let value = -0.0;
        let int_value: ConversionResult<i32, _> = value.try_into_int();
        assert_eq!(int_value, Ok(0));
    }

    #[test]
    fn large_value_overflow() {
        let value: f64 = 1.000000020000001e200;
        let int_value: ConversionResult<i32, _> = value.try_into_int();
        assert_eq!(int_value, Err(ConversionError::Overflow))
    }

    #[test]
    fn large_negative_value_underflow() {
        let value: f64 = -1.000000020000001e200;
        let int_value: ConversionResult<i32, _> = value.try_into_int();
        assert_eq!(int_value, Err(ConversionError::Underflow))
    }

    #[test]
    fn na_not_integerish() {
        // NA-checks are unavailable unless R is set up
        test! {
            let value: f64 = f64::na();
            let int_value: ConversionResult<i32, _> = value.try_into_int();
            assert_eq!(int_value, Err(ConversionError::NotIntegerish));
        }
    }

    #[test]
    fn fractional_not_integerish() {
        let value: f64 = 1.5;
        let int_value: ConversionResult<i32, _> = value.try_into_int();
        assert_eq!(int_value, Err(ConversionError::NotIntegerish))
    }

    #[test]
    fn negative_fractional_not_integerish() {
        let value: f64 = -1.5;
        let int_value: ConversionResult<i32, _> = value.try_into_int();
        assert_eq!(int_value, Err(ConversionError::NotIntegerish))
    }

    #[test]
    fn small_integerish_negative_to_unsigned_underflow() {
        let value: f64 = -1.0;
        let int_value: ConversionResult<u32, _> = value.try_into_int();
        assert_eq!(int_value, Err(ConversionError::Underflow))
    }

    #[test]
    fn integerish_converts_successfully() {
        let value: f64 = 42.0;

        assert_eq!(FloatToInt::<i128>::try_into_int(&value), Ok(42));
        assert_eq!(FloatToInt::<i64>::try_into_int(&value), Ok(42));
        assert_eq!(FloatToInt::<i32>::try_into_int(&value), Ok(42));
        assert_eq!(FloatToInt::<i16>::try_into_int(&value), Ok(42));
        assert_eq!(FloatToInt::<i8>::try_into_int(&value), Ok(42));

        assert_eq!(FloatToInt::<u128>::try_into_int(&value), Ok(42));
        assert_eq!(FloatToInt::<u64>::try_into_int(&value), Ok(42));
        assert_eq!(FloatToInt::<u32>::try_into_int(&value), Ok(42));
        assert_eq!(FloatToInt::<u16>::try_into_int(&value), Ok(42));
        assert_eq!(FloatToInt::<u8>::try_into_int(&value), Ok(42));
    }
}