extendr_api/
iter.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
use crate::*;

use wrapper::symbol::levels_symbol;

/// Iterator over name-value pairs in lists.
pub type NamedListIter = std::iter::Zip<StrIter, ListIter>;

/// Iterator over strings or string factors.
///
/// ```
/// use extendr_api::prelude::*;
/// test! {
///     let robj = r!(["a", "b", "c"]);
///     assert_eq!(robj.as_str_iter().unwrap().collect::<Vec<_>>(), vec!["a", "b", "c"]);
///
///     let factor = factor!(["abcd", "def", "fg", "fg"]);
///     assert_eq!(factor.levels().unwrap().collect::<Vec<_>>(), vec!["abcd", "def", "fg"]);
///     assert_eq!(factor.as_integer_vector().unwrap(), vec![1, 2, 3, 3]);
///     assert_eq!(factor.as_str_iter().unwrap().collect::<Vec<_>>(), vec!["abcd", "def", "fg", "fg"]);
///     assert_eq!(factor.as_str_iter().unwrap().collect::<Vec<_>>(), vec!["abcd", "def", "fg", "fg"]);
/// }
/// ```
#[derive(Clone)]
pub struct StrIter {
    vector: Robj,
    i: usize,
    len: usize,
    levels: SEXP,
}

impl Default for StrIter {
    fn default() -> Self {
        StrIter::new(0)
    }
}

impl StrIter {
    /// Make an empty str iterator.
    pub fn new(len: usize) -> Self {
        let vector = if len == 0 { nil_value() } else { na_string() };
        unsafe {
            Self {
                vector,
                i: 0,
                len,
                levels: R_NilValue,
            }
        }
    }

    pub fn na_iter(len: usize) -> StrIter {
        Self {
            len,
            ..Default::default()
        }
    }
}

// Get a string reference from a `CHARSXP`
pub(crate) fn str_from_strsxp<'a>(sexp: SEXP, index: usize) -> Option<&'a str> {
    single_threaded(|| unsafe {
        let charsxp = STRING_ELT(sexp, index as _);
        rstr::charsxp_to_str(charsxp)
    })
}

impl Iterator for StrIter {
    type Item = &'static str;

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.len, Some(self.len))
    }

    fn next(&mut self) -> Option<Self::Item> {
        unsafe {
            let i = self.i;
            self.i += 1;
            let vector = self.vector.get();
            if i >= self.len {
                None
            } else if TYPEOF(vector) == SEXPTYPE::NILSXP {
                None
            } else if TYPEOF(vector) == SEXPTYPE::STRSXP {
                str_from_strsxp(vector, i)
            } else if vector == R_NaString {
                Some(<&str>::na())
            } else if TYPEOF(vector) == SEXPTYPE::CHARSXP {
                rstr::charsxp_to_str(vector)
            } else if Rf_isFactor(vector).into() {
                // factor support: factor is an integer, and we need
                // the value of it, to retrieve the assigned label
                let level_index = std::slice::from_raw_parts(INTEGER(vector), self.len as _);
                let level_index = level_index.get(i)?;
                let level_index = level_index
                    .checked_sub(1)
                    .expect("the factor integer has an invalid value in it");
                str_from_strsxp(self.levels, level_index as _)
            } else {
                None
            }
        }
    }

    fn nth(&mut self, n: usize) -> Option<Self::Item> {
        self.i += n;
        self.next()
    }
}

impl ExactSizeIterator for StrIter {
    fn len(&self) -> usize {
        self.len - self.i
    }
}

macro_rules! impl_iter_debug {
    ($name: ty) => {
        impl std::fmt::Debug for $name {
            fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
                write!(f, "[")?;
                let mut comma = "";
                for s in self.clone() {
                    write!(f, "{}{:?}", comma, s)?;
                    comma = ", ";
                }
                write!(f, "]")
            }
        }
    };
}

impl_iter_debug!(ListIter);
impl_iter_debug!(PairlistIter);
impl_iter_debug!(StrIter);
impl_iter_debug!(EnvIter);

// Lets us create a StrIter from an Robj, e.g. Strings or a factor
impl TryFrom<&Robj> for StrIter {
    type Error = Error;

    fn try_from(value: &Robj) -> Result<Self> {
        value
            .as_str_iter()
            .ok_or_else(|| Error::ExpectedString(value.clone()))
    }
}

impl TryFrom<Robj> for StrIter {
    type Error = Error;

    fn try_from(value: Robj) -> Result<Self> {
        (&value).try_into()
    }
}

pub trait AsStrIter: GetSexp + Types + Length + Attributes + Rinternals {
    /// Get an iterator over a string vector.
    /// Returns None if the object is not a string vector
    /// but works for factors.
    ///
    /// ```
    /// use extendr_api::prelude::*;
    ///
    /// test! {
    ///     let obj = Robj::from(vec!["a", "b", "c"]);
    ///     assert_eq!(obj.as_str_iter().unwrap().collect::<Vec<_>>(), vec!["a", "b", "c"]);
    ///
    ///     let factor = factor!(vec!["abcd", "def", "fg", "fg"]);
    ///     assert_eq!(factor.levels().unwrap().collect::<Vec<_>>(), vec!["abcd", "def", "fg"]);
    ///     assert_eq!(factor.as_integer_vector().unwrap(), vec![1, 2, 3, 3]);
    ///     assert_eq!(factor.as_str_iter().unwrap().collect::<Vec<_>>(), vec!["abcd", "def", "fg", "fg"]);
    ///     assert_eq!(factor.as_str_iter().unwrap().collect::<Vec<_>>(), vec!["abcd", "def", "fg", "fg"]);
    ///
    ///     let obj = Robj::from(vec![Some("a"), Some("b"), None]);
    ///     assert_eq!(obj.as_str_iter().unwrap().map(|s| s.is_na()).collect::<Vec<_>>(), vec![false, false, true]);
    ///
    ///     let obj = Robj::from(vec!["a", "b", <&str>::na()]);
    ///     assert_eq!(obj.as_str_iter().unwrap().map(|s| s.is_na()).collect::<Vec<_>>(), vec![false, false, true]);
    ///
    ///     let obj = Robj::from(vec!["a", "b", "NA"]);
    ///     assert_eq!(obj.as_str_iter().unwrap().map(|s| s.is_na()).collect::<Vec<_>>(), vec![false, false, false]);
    /// }
    /// ```
    fn as_str_iter(&self) -> Option<StrIter> {
        let i = 0;
        let len = self.len();
        if self.sexptype() == SEXPTYPE::STRSXP {
            unsafe {
                Some(StrIter {
                    vector: self.as_robj().clone(),
                    i,
                    len,
                    levels: R_NilValue,
                })
            }
        } else if self.sexptype() == SEXPTYPE::CHARSXP {
            let len = 1;
            unsafe {
                Some(StrIter {
                    vector: self.as_robj().clone(),
                    i,
                    len,
                    levels: R_NilValue,
                })
            }
        } else if self.is_factor() {
            let levels = self.get_attrib(levels_symbol()).unwrap();
            unsafe {
                Some(StrIter {
                    vector: self.as_robj().clone(),
                    i,
                    len,
                    levels: levels.get(),
                })
            }
        } else {
            None
        }
    }
}

impl AsStrIter for Robj {}

#[cfg(test)]
mod tests {
    use extendr_engine::with_r;

    use super::*;

    #[test]
    fn single_charsxp_iterator() {
        with_r(|| {
            let single_charsxp = blank_string();
            let s1: Vec<_> = single_charsxp.as_str_iter().unwrap().collect();
            let single_charsxp = blank_scalar_string();
            let s2: Vec<_> = single_charsxp.as_str_iter().unwrap().collect();
            assert_eq!(s1, s2);
            assert_eq!(s1.len(), 1);
            assert_eq!(s2.len(), 1);
        });
    }

    #[test]
    fn test_new_constructor() {
        with_r(|| {
            let str_iter = StrIter::new(10);
            assert_eq!(str_iter.collect::<Vec<_>>().len(), 10);
            let str_iter = StrIter::new(0);
            let str_iter_collect = str_iter.collect::<Vec<_>>();
            assert_eq!(str_iter_collect.len(), 0);
            assert!(str_iter_collect.is_empty());
            let mut str_iter = StrIter::new(0);
            assert!(str_iter.next().is_none());
        });
    }
}