extendr_api/optional/ndarray.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
/*!
Defines conversions between R objects and the [`ndarray`](https://docs.rs/ndarray/latest/ndarray/) crate, which offers native Rust array types and numerical computation routines.
To enable these conversions, you must first enable the `ndarray` feature for extendr:
```toml
[dependencies]
extendr-api = { version = "0.4", features = ["ndarray"] }
```
Specifically, extendr supports the following conversions:
* [`Robj` → `ArrayView1`](FromRobj#impl-FromRobj<%27a>-for-ArrayView1<%27a%2C%20T>), for when you have an R vector that you want to analyse in Rust:
```rust
use extendr_api::prelude::*;
#[extendr]
fn describe_vector(vector: ArrayView1<f64>){
println!("This R vector has length {:?}", vector.len())
}
```
* [`Robj` → `ArrayView2`](FromRobj#impl-FromRobj<%27a>-for-ArrayView2<%27a%2C%20f64>), for when you have an R matrix that you want to analyse in Rust.
```rust
use extendr_api::prelude::*;
#[extendr]
fn describe_matrix(matrix: ArrayView2<f64>){
println!("This R matrix has shape {:?}", matrix.dim())
}
```
* [`ArrayBase` → `Robj`](Robj#impl-TryFrom<ArrayBase<S%2C%20D>>-for-Robj), for when you want to return a reference to an [`ndarray`] Array from Rust back to R.
```rust
use extendr_api::prelude::*;
#[extendr]
fn return_matrix() -> Robj {
Array2::<f64>::zeros((4, 4)).try_into().unwrap()
}
```
The item type (ie the `T` in [`Array2<T>`]) can be a variety of Rust types that can represent scalars: [`u32`], [`i32`], [`f64`] and, if you have the `num_complex` compiled feature
enabled, `Complex<f64>`. Items can also be extendr's wrapper types: [`Rbool`], [`Rint`], [`Rfloat`] and [`Rcplx`].
Note that the extendr-ndarray integration only supports accessing R arrays as [`ArrayView`], which are immutable.
Therefore, instead of directly editing the input array, it is recommended that you instead return a new array from your `#[extendr]`-annotated function, which you allocate in Rust.
It will then be copied into a new block of memory managed by R.
This is made easier by the fact that [ndarray allocates a new array automatically when performing operations on array references](ArrayBase#binary-operators-with-array-and-scalar):
```rust
use extendr_api::prelude::*;
#[extendr]
fn scalar_multiplication(matrix: ArrayView2<f64>, scalar: f64) -> Robj {
(&matrix * scalar).try_into().unwrap()
}
```
For all array uses in Rust, refer to the [`ndarray::ArrayBase`] documentation, which explains the usage for all of the above types.
*/
#[doc(hidden)]
use ndarray::prelude::*;
use ndarray::{Data, ShapeBuilder};
use crate::prelude::{c64, dim_symbol, Rcplx, Rfloat, Rint};
use crate::*;
macro_rules! make_array_view_1 {
($type: ty, $error_fn: expr) => {
impl<'a> TryFrom<&'_ Robj> for ArrayView1<'a, $type> {
type Error = crate::Error;
fn try_from(robj: &Robj) -> Result<Self> {
if let Some(v) = robj.as_typed_slice() {
Ok(ArrayView1::<'a, $type>::from(v))
} else {
Err($error_fn(robj.clone()))
}
}
}
impl<'a> TryFrom<Robj> for ArrayView1<'a, $type> {
type Error = crate::Error;
fn try_from(robj: Robj) -> Result<Self> {
Self::try_from(&robj)
}
}
};
}
macro_rules! make_array_view_2 {
($type: ty, $error_str: expr, $error_fn: expr) => {
impl<'a> TryFrom<&'_ Robj> for ArrayView2<'a, $type> {
type Error = crate::Error;
fn try_from(robj: &Robj) -> Result<Self> {
if robj.is_matrix() {
let nrows = robj.nrows();
let ncols = robj.ncols();
if let Some(v) = robj.as_typed_slice() {
// use fortran order.
let shape = (nrows, ncols).into_shape().f();
return ArrayView2::from_shape(shape, v)
.map_err(|err| Error::NDArrayShapeError(err));
} else {
return Err($error_fn(robj.clone()));
}
}
return Err(Error::ExpectedMatrix(robj.clone()));
}
}
impl<'a> TryFrom<Robj> for ArrayView2<'a, $type> {
type Error = crate::Error;
fn try_from(robj: Robj) -> Result<Self> {
Self::try_from(&robj)
}
}
};
}
make_array_view_1!(Rbool, Error::ExpectedLogical);
make_array_view_1!(Rint, Error::ExpectedInteger);
make_array_view_1!(i32, Error::ExpectedInteger);
make_array_view_1!(Rfloat, Error::ExpectedReal);
make_array_view_1!(f64, Error::ExpectedReal);
make_array_view_1!(Rcplx, Error::ExpectedComplex);
make_array_view_1!(c64, Error::ExpectedComplex);
make_array_view_1!(Rstr, Error::ExpectedString);
make_array_view_2!(Rbool, "Not a logical matrix.", Error::ExpectedLogical);
make_array_view_2!(Rint, "Not an integer matrix.", Error::ExpectedInteger);
make_array_view_2!(i32, "Not an integer matrix.", Error::ExpectedInteger);
make_array_view_2!(Rfloat, "Not a floating point matrix.", Error::ExpectedReal);
make_array_view_2!(f64, "Not a floating point matrix.", Error::ExpectedReal);
make_array_view_2!(
Rcplx,
"Not a complex number matrix.",
Error::ExpectedComplex
);
make_array_view_2!(c64, "Not a complex number matrix.", Error::ExpectedComplex);
make_array_view_2!(Rstr, "Not a string matrix.", Error::ExpectedString);
impl<A, S, D> TryFrom<&ArrayBase<S, D>> for Robj
where
S: Data<Elem = A>,
A: Copy + ToVectorValue,
D: Dimension,
{
type Error = Error;
/// Converts a reference to an ndarray Array into an equivalent R array.
/// The data itself is copied.
fn try_from(value: &ArrayBase<S, D>) -> Result<Self> {
// Refer to https://github.com/rust-ndarray/ndarray/issues/1060 for an excellent discussion
// on how to convert from `ndarray` types to R/fortran arrays
// This thread has informed the design decisions made here.
// In general, transposing and then iterating an ndarray in C-order (`iter()`) is exactly
// equivalent to iterating that same array in Fortan-order (which `ndarray` doesn't currently support)
let mut result = value
.t()
.iter()
// Since we only have a reference, we have to copy all elements so that we can own the entire R array
.copied()
.collect_robj();
result.set_attrib(
dim_symbol(),
value
.shape()
.iter()
.map(|x| i32::try_from(*x))
.collect::<std::result::Result<Vec<i32>, <i32 as TryFrom<usize>>::Error>>()
.map_err(|_err| {
Error::Other(String::from(
"One or more array dimensions were too large to be handled by R.",
))
})?,
)?;
Ok(result)
}
}
impl<A, S, D> TryFrom<ArrayBase<S, D>> for Robj
where
S: Data<Elem = A>,
A: Copy + ToVectorValue,
D: Dimension,
{
type Error = Error;
/// Converts an ndarray Array into an equivalent R array.
/// The data itself is copied.
fn try_from(value: ArrayBase<S, D>) -> Result<Self> {
Robj::try_from(&value)
}
}
#[cfg(test)]
mod test {
use super::*;
use crate as extendr_api;
use ndarray::array;
use rstest::rstest;
#[rstest]
// Scalars
#[case(
"1.0",
ArrayView1::<f64>::from(&[1.][..])
)]
#[case(
"1L",
ArrayView1::<i32>::from(&[1][..])
)]
#[case(
"TRUE",
ArrayView1::<Rbool>::from(&[TRUE][..])
)]
// Matrices
#[case(
"matrix(c(1, 2, 3, 4, 5, 6, 7, 8), ncol=2, nrow=4)",
<Array2<f64>>::from_shape_vec((4, 2).f(), vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]).unwrap()
)]
#[case(
// Testing the memory layout is Fortran
"matrix(c(1, 2, 3, 4, 5, 6, 7, 8), ncol=2, nrow=4)[, 1]",
<Array2<f64>>::from_shape_vec((4, 2).f(), vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]).unwrap().column(0).to_owned()
)]
#[case(
"matrix(c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L), ncol=2, nrow=4)",
<Array2<i32>>::from_shape_vec((4, 2).f(), vec![1, 2, 3, 4, 5, 6, 7, 8]).unwrap()
)]
#[case(
"matrix(c(T, T, T, T, F, F, F, F), ncol=2, nrow=4)",
<Array2<Rbool>>::from_shape_vec((4, 2).f(), vec![true.into(), true.into(), true.into(), true.into(), false.into(), false.into(), false.into(), false.into()]).unwrap()
)]
fn test_from_robj<DataType, DimType, Error>(
#[case] left: &'static str,
#[case] right: ArrayBase<DataType, DimType>,
) where
DataType: Data,
Error: std::fmt::Debug,
for<'a> ArrayView<'a, <DataType as ndarray::RawData>::Elem, DimType>:
TryFrom<&'a Robj, Error = Error>,
DimType: Dimension,
<DataType as ndarray::RawData>::Elem: PartialEq + std::fmt::Debug,
Error: std::fmt::Debug,
{
// Tests for the R → Rust conversion
test! {
let left_robj = eval_string(left).unwrap();
let left_array = <ArrayView<DataType::Elem, DimType>>::try_from(&left_robj).unwrap();
assert_eq!( left_array, right );
}
}
#[rstest]
#[case(
// An empty array should still convert to an empty R array with the same shape
Array4::<i32>::zeros((0, 1, 2, 3).f()),
"array(integer(), c(0, 1, 2, 3))"
)]
#[case(
array![1., 2., 3.],
"array(c(1, 2, 3))"
)]
#[case(
// We give both R and Rust the same 1d vector and tell them both to read it as a matrix in C order.
// Therefore these arrays should be the same.
Array::from_shape_vec((2, 3), vec![1., 2., 3., 4., 5., 6.]).unwrap(),
"matrix(c(1, 2, 3, 4, 5, 6), nrow=2, byrow=TRUE)"
)]
#[case(
// We give both R and Rust the same 1d vector and tell them both to read it as a matrix
// in fortran order. Therefore these arrays should be the same.
Array::from_shape_vec((2, 3).f(), vec![1., 2., 3., 4., 5., 6.]).unwrap(),
"matrix(c(1, 2, 3, 4, 5, 6), nrow=2, byrow=FALSE)"
)]
#[case(
// We give both R and Rust the same 1d vector and tell them both to read it as a 3d array
// in fortran order. Therefore these arrays should be the same.
Array::from_shape_vec((1, 2, 3).f(), vec![1, 2, 3, 4, 5, 6]).unwrap(),
"array(1:6, c(1, 2, 3))"
)]
#[case(
// We give R a 1d vector and tell it to read it as a 3d vector
// Then we give Rust the equivalent vector manually split out.
array![[[1, 5], [3, 7]], [[2, 6], [4, 8]]],
"array(1:8, dim=c(2, 2, 2))"
)]
fn test_to_robj<ElementType, DimType>(
#[case] array: Array<ElementType, DimType>,
#[case] r_expr: &str,
) where
Robj: TryFrom<Array<ElementType, DimType>>,
for<'a> Robj: TryFrom<&'a Array<ElementType, DimType>>,
<robj::Robj as TryFrom<Array<ElementType, DimType>>>::Error: std::fmt::Debug,
for<'a> <robj::Robj as TryFrom<&'a Array<ElementType, DimType>>>::Error: std::fmt::Debug,
{
// Tests for the Rust → R conversion, so we therefore perform the
// comparison in R
test! {
// Test for borrowed array
assert_eq!(
&(Robj::try_from(&array).unwrap()),
&eval_string(r_expr).unwrap()
);
// Test for owned array
assert_eq!(
&(Robj::try_from(array).unwrap()),
&eval_string(r_expr).unwrap()
);
}
}
#[test]
fn test_round_trip() {
test! {
let rvals = [
R!("matrix(c(1L, 2L, 3L, 4L, 5L, 6L), nrow=2)"),
R!("array(1:8, c(4, 2))")
];
for rval in rvals {
let rval = rval.unwrap();
let rust_arr= <ArrayView2<i32>>::try_from(&rval).unwrap();
let r_arr: Robj = (&rust_arr).try_into().unwrap();
assert_eq!(
rval,
r_arr
);
}
}
}
}