1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
//! Wrappers for matrices with deferred arithmetic.

use super::*;
use crate::robj::GetSexp;
use crate::scalar::Scalar;
use std::ops::{Index, IndexMut};

/// Wrapper for creating and using matrices and arrays.
///
/// ```
/// use extendr_api::prelude::*;
/// test! {
///     let matrix = RMatrix::new_matrix(3, 2, |r, c| [
///         [1., 2., 3.],
///          [4., 5., 6.]][c][r]);
///     let robj = r!(matrix);
///     assert_eq!(robj.is_matrix(), true);
///     assert_eq!(robj.nrows(), 3);
///     assert_eq!(robj.ncols(), 2);
///
///     let matrix2 : RMatrix<f64> = robj.as_matrix().ok_or("error")?;
///     assert_eq!(matrix2.data().len(), 6);
///     assert_eq!(matrix2.nrows(), 3);
///     assert_eq!(matrix2.ncols(), 2);
/// }
/// ```
#[derive(Debug, PartialEq)]
pub struct RArray<T, D> {
    /// Owning Robj (probably should be a Pin).
    robj: Robj,

    /// Dimensions of the array.
    dim: D,
    _data: std::marker::PhantomData<T>,
}

pub type RColumn<T> = RArray<T, [usize; 1]>;
pub type RMatrix<T> = RArray<T, [usize; 2]>;
pub type RMatrix3D<T> = RArray<T, [usize; 3]>;

impl<T> RMatrix<T>
where
    T: ToVectorValue,
    Robj: for<'a> AsTypedSlice<'a, T>,
{
    /// Returns an [`RMatrix`] with dimensions according to `nrow` and `ncol`,
    /// with arbitrary entries. To initialize a matrix containing only `NA`
    /// values, use [`RMatrix::new_with_na`].
    pub fn new(nrow: usize, ncol: usize) -> Self {
        let sexptype = T::sexptype();
        let matrix = Robj::alloc_matrix(sexptype, nrow as _, ncol as _);
        RArray::from_parts(matrix, [nrow, ncol])
    }
}

impl<T> RMatrix<T>
where
    T: ToVectorValue + CanBeNA,
    Robj: for<'a> AsTypedSlice<'a, T>,
{
    /// Returns an [`RMatrix`] with dimensions according to `nrow` and `ncol`,
    /// with all entries set to `NA`.
    ///
    /// Note that since [`Raw`] does not have an NA representation in R,
    /// this method is not implemented for [`Rbyte`].
    pub fn new_with_na(nrow: usize, ncol: usize) -> Self {
        let mut matrix = Self::new(nrow, ncol);
        if nrow != 0 || ncol != 0 {
            // matrix.data_mut().iter_mut().for_each(|x| {
            matrix
                .as_typed_slice_mut()
                .unwrap()
                .iter_mut()
                .for_each(|x| {
                    *x = T::na();
                });
        }
        matrix
    }
}

const BASE: usize = 0;

trait Offset<D> {
    /// Get the offset into the array for a given index.
    fn offset(&self, idx: D) -> usize;
}

impl<T> Offset<[usize; 1]> for RArray<T, [usize; 1]> {
    /// Get the offset into the array for a given index.
    fn offset(&self, index: [usize; 1]) -> usize {
        if index[0] - BASE > self.dim[0] {
            panic!("array index: row overflow");
        }
        index[0] - BASE
    }
}

impl<T> Offset<[usize; 2]> for RArray<T, [usize; 2]> {
    /// Get the offset into the array for a given index.
    fn offset(&self, index: [usize; 2]) -> usize {
        if index[0] - BASE > self.dim[0] {
            panic!("matrix index: row overflow");
        }
        if index[1] - BASE > self.dim[1] {
            panic!("matrix index: column overflow");
        }
        (index[0] - BASE) + self.dim[0] * (index[1] - BASE)
    }
}

impl<T> Offset<[usize; 3]> for RArray<T, [usize; 3]> {
    /// Get the offset into the array for a given index.
    fn offset(&self, index: [usize; 3]) -> usize {
        if index[0] - BASE > self.dim[0] {
            panic!("RMatrix3D index: row overflow");
        }
        if index[1] - BASE > self.dim[1] {
            panic!("RMatrix3D index: column overflow");
        }
        if index[2] - BASE > self.dim[2] {
            panic!("RMatrix3D index: submatrix overflow");
        }
        (index[0] - BASE) + self.dim[0] * (index[1] - BASE + self.dim[1] * (index[2] - BASE))
    }
}

impl<'a, T, D> RArray<T, D>
where
    T: 'a,
    Robj: AsTypedSlice<'a, T>,
{
    pub fn from_parts(robj: Robj, dim: D) -> Self {
        Self {
            robj,
            dim,
            _data: std::marker::PhantomData,
        }
    }

    /// Returns a flat representation of the array in col-major.
    pub fn data(&self) -> &'a [T] {
        self.as_typed_slice().unwrap()
    }

    /// Returns a flat mutable representation of the array in col-major.
    pub fn data_mut(&mut self) -> &'a mut [T] {
        self.as_typed_slice_mut().unwrap()
    }

    /// Get the dimensions for this array.
    pub fn dim(&self) -> &D {
        &self.dim
    }
}

impl<'a, T: ToVectorValue + 'a> RColumn<T>
where
    Robj: AsTypedSlice<'a, T>,
{
    /// Make a new column type.
    pub fn new_column<F: FnMut(usize) -> T>(nrows: usize, f: F) -> Self {
        let mut robj = (0..nrows).map(f).collect_robj();
        let dim = [nrows];
        let robj = robj.set_attrib(wrapper::symbol::dim_symbol(), dim).unwrap();
        RArray::from_parts(robj, dim)
    }

    /// Get the number of rows.
    pub fn nrows(&self) -> usize {
        self.dim[0]
    }
}

impl<'a, T: ToVectorValue + 'a> RMatrix<T>
where
    Robj: AsTypedSlice<'a, T>,
{
    /// Create a new matrix wrapper.
    ///
    /// # Arguments
    ///
    /// * `nrows` - the number of rows the returned matrix will have
    /// * `ncols` - the number of columns the returned matrix will have
    /// * `f` - a function that will be called for each entry of the matrix in order to populate it with values.
    ///     It must return a scalar value that can be converted to an R scalar, such as `i32`, `u32`, or `f64`, i.e. see [ToVectorValue].
    ///     It accepts two arguments:
    ///     * `r` - the current row of the entry we are creating
    ///     * `c` - the current column of the entry we are creating
    pub fn new_matrix<F: Clone + FnMut(usize, usize) -> T>(
        nrows: usize,
        ncols: usize,
        f: F,
    ) -> Self {
        let mut robj = (0..ncols)
            .flat_map(|c| {
                let mut g = f.clone();
                (0..nrows).map(move |r| g(r, c))
            })
            .collect_robj();
        let dim = [nrows, ncols];
        let robj = robj.set_attrib(wrapper::symbol::dim_symbol(), dim).unwrap();
        RArray::from_parts(robj, dim)
    }

    /// Get the number of rows.
    pub fn nrows(&self) -> usize {
        self.dim[0]
    }

    /// Get the number of columns.
    pub fn ncols(&self) -> usize {
        self.dim[1]
    }
}

impl<'a, T: ToVectorValue + 'a> RMatrix3D<T>
where
    Robj: AsTypedSlice<'a, T>,
{
    pub fn new_matrix3d<F: Clone + FnMut(usize, usize, usize) -> T>(
        nrows: usize,
        ncols: usize,
        nmatrix: usize,
        f: F,
    ) -> Self {
        let mut robj = (0..nmatrix)
            .flat_map(|m| {
                let h = f.clone();
                (0..ncols).flat_map(move |c| {
                    let mut g = h.clone();
                    (0..nrows).map(move |r| g(r, c, m))
                })
            })
            .collect_robj();
        let dim = [nrows, ncols, nmatrix];
        let robj = robj.set_attrib(wrapper::symbol::dim_symbol(), dim).unwrap();
        RArray::from_parts(robj, dim)
    }

    /// Get the number of rows.
    pub fn nrows(&self) -> usize {
        self.dim[0]
    }

    /// Get the number of columns.
    pub fn ncols(&self) -> usize {
        self.dim[1]
    }

    /// Get the number of submatrices.
    pub fn nsub(&self) -> usize {
        self.dim[2]
    }
}

impl<'a, T: 'a> TryFrom<Robj> for RColumn<T>
where
    Robj: AsTypedSlice<'a, T>,
{
    type Error = Error;

    fn try_from(mut robj: Robj) -> Result<Self> {
        if let Some(_slice) = robj.as_typed_slice_mut() {
            let len = robj.len();
            Ok(RArray::from_parts(robj, [len]))
        } else {
            Err(Error::ExpectedVector(robj))
        }
    }
}

impl<'a, T: 'a> TryFrom<Robj> for RMatrix<T>
where
    Robj: AsTypedSlice<'a, T>,
{
    type Error = Error;

    fn try_from(mut robj: Robj) -> Result<Self> {
        if !robj.is_matrix() {
            Err(Error::ExpectedMatrix(robj))
        } else if let Some(_slice) = robj.as_typed_slice_mut() {
            if let Some(dim) = robj.dim() {
                let dim: Vec<_> = dim.iter().map(|d| d.inner() as usize).collect();
                if dim.len() != 2 {
                    Err(Error::ExpectedMatrix(robj))
                } else {
                    Ok(RArray::from_parts(robj, [dim[0], dim[1]]))
                }
            } else {
                Err(Error::ExpectedMatrix(robj))
            }
        } else {
            Err(Error::TypeMismatch(robj))
        }
    }
}

impl<'a, T: 'a> TryFrom<Robj> for RMatrix3D<T>
where
    Robj: AsTypedSlice<'a, T>,
{
    type Error = Error;

    fn try_from(mut robj: Robj) -> Result<Self> {
        if let Some(_slice) = robj.as_typed_slice_mut() {
            if let Some(dim) = robj.dim() {
                if dim.len() != 3 {
                    Err(Error::ExpectedMatrix3D(robj))
                } else {
                    let dim: Vec<_> = dim.iter().map(|d| d.inner() as usize).collect();
                    Ok(RArray::from_parts(robj, [dim[0], dim[1], dim[2]]))
                }
            } else {
                Err(Error::ExpectedMatrix3D(robj))
            }
        } else {
            Err(Error::TypeMismatch(robj))
        }
    }
}

impl<T, D> From<RArray<T, D>> for Robj {
    /// Convert a column, matrix or matrix3d to an Robj.
    fn from(array: RArray<T, D>) -> Self {
        array.robj
    }
}

pub trait MatrixConversions: GetSexp {
    fn as_column<'a, E: 'a>(&self) -> Option<RColumn<E>>
    where
        Robj: AsTypedSlice<'a, E>,
    {
        <RColumn<E>>::try_from(self.as_robj().clone()).ok()
    }

    fn as_matrix<'a, E: 'a>(&self) -> Option<RMatrix<E>>
    where
        Robj: AsTypedSlice<'a, E>,
    {
        <RMatrix<E>>::try_from(self.as_robj().clone()).ok()
    }

    fn as_matrix3d<'a, E: 'a>(&self) -> Option<RMatrix3D<E>>
    where
        Robj: AsTypedSlice<'a, E>,
    {
        <RMatrix3D<E>>::try_from(self.as_robj().clone()).ok()
    }
}

impl MatrixConversions for Robj {}

impl<'a, T> Index<[usize; 2]> for RArray<T, [usize; 2]>
where
    T: 'a,
    robj::Robj: robj::AsTypedSlice<'a, T>,
{
    type Output = T;

    /// Zero-based indexing in row, column order.
    ///
    /// Panics if out of bounds.
    /// ```
    /// use extendr_api::prelude::*;
    /// test! {
    ///    let matrix = RArray::new_matrix(3, 2, |r, c| [
    ///        [1., 2., 3.],
    ///        [4., 5., 6.]][c][r]);
    ///     assert_eq!(matrix[[0, 0]], 1.);
    ///     assert_eq!(matrix[[1, 0]], 2.);
    ///     assert_eq!(matrix[[2, 1]], 6.);
    /// }
    /// ```
    fn index(&self, index: [usize; 2]) -> &Self::Output {
        unsafe {
            self.data()
                .as_ptr()
                .add(self.offset(index))
                .as_ref()
                .unwrap()
        }
    }
}

impl<'a, T> IndexMut<[usize; 2]> for RArray<T, [usize; 2]>
where
    T: 'a,
    robj::Robj: robj::AsTypedSlice<'a, T>,
{
    /// Zero-based mutable indexing in row, column order.
    ///
    /// Panics if out of bounds.
    /// ```
    /// use extendr_api::prelude::*;
    /// test! {
    ///     let mut matrix = RMatrix::new_matrix(3, 2, |_, _| 0.);
    ///     matrix[[0, 0]] = 1.;
    ///     matrix[[1, 0]] = 2.;
    ///     matrix[[2, 0]] = 3.;
    ///     matrix[[0, 1]] = 4.;
    ///     assert_eq!(matrix.as_real_slice().unwrap(), &[1., 2., 3., 4., 0., 0.]);
    /// }
    /// ```
    fn index_mut(&mut self, index: [usize; 2]) -> &mut Self::Output {
        unsafe {
            self.data_mut()
                .as_mut_ptr()
                .add(self.offset(index))
                .as_mut()
                .unwrap()
        }
    }
}

impl<T, D> Deref for RArray<T, D> {
    type Target = Robj;

    fn deref(&self) -> &Self::Target {
        &self.robj
    }
}

impl<T, D> DerefMut for RArray<T, D> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.robj
    }
}

#[cfg(test)]
mod tests {
    use extendr_engine::with_r;
    use prelude::{Rcplx, Rfloat, Rint};

    use super::*;

    #[test]
    fn test_empty_matrix_new() {
        dbg!("print like R");
        with_r(|| {
            // These are arbitrarily filled. We cannot create assertions for them.
            let m: RMatrix<Rbyte> = RMatrix::new(5, 2); // possible!
            unsafe { Rf_PrintValue(m.get()) };
            let m: RMatrix<Rbool> = RMatrix::new(5, 2);
            unsafe { Rf_PrintValue(m.get()) };
            let m: RMatrix<Rint> = RMatrix::new(5, 2);
            unsafe { Rf_PrintValue(m.get()) };
            let m: RMatrix<Rfloat> = RMatrix::new(5, 2);
            unsafe { Rf_PrintValue(m.get()) };
            let m: RMatrix<Rcplx> = RMatrix::new(5, 2);
            unsafe { Rf_PrintValue(m.get()) };

            // let m: RMatrix<Rbyte> = RMatrix::new_with_na(10, 2); // not possible!
            // unsafe { Rf_PrintValue(m.get()) };
            let m: RMatrix<Rbool> = RMatrix::new_with_na(10, 2);
            assert_eq!(R!("matrix(NA, 10, 2)").unwrap(), m.into_robj());

            let m: RMatrix<Rint> = RMatrix::new_with_na(10, 2);
            assert_eq!(R!("matrix(NA_integer_, 10, 2)").unwrap(), m.into_robj());

            let m: RMatrix<Rfloat> = RMatrix::new_with_na(10, 2);
            assert_eq!(R!("matrix(NA_real_, 10, 2)").unwrap(), m.into_robj());

            let m: RMatrix<Rcplx> = RMatrix::new_with_na(10, 2);
            assert_eq!(R!("matrix(NA_complex_, 10, 2)").unwrap(), m.into_robj());
        });
    }

    #[test]
    fn matrix_ops() {
        test! {
            let vector = RColumn::new_column(3, |r| [1., 2., 3.][r]);
            let robj = r!(vector);
            assert_eq!(robj.is_vector(), true);
            assert_eq!(robj.nrows(), 3);

            let vector2 : RColumn<f64> = robj.as_column().ok_or("expected array")?;
            assert_eq!(vector2.data().len(), 3);
            assert_eq!(vector2.nrows(), 3);

            let matrix = RMatrix::new_matrix(3, 2, |r, c| [
                [1., 2., 3.],
                [4., 5., 6.]][c][r]);
            let robj = r!(matrix);
            assert_eq!(robj.is_matrix(), true);
            assert_eq!(robj.nrows(), 3);
            assert_eq!(robj.ncols(), 2);
            let matrix2 : RMatrix<f64> = robj.as_matrix().ok_or("expected matrix")?;
            assert_eq!(matrix2.data().len(), 6);
            assert_eq!(matrix2.nrows(), 3);
            assert_eq!(matrix2.ncols(), 2);

            let array = RMatrix3D::new_matrix3d(2, 2, 2, |r, c, m| [
                [[1., 2.],  [3., 4.]],
                [[5.,  6.], [7., 8.]]][m][c][r]);
            let robj = r!(array);
            assert_eq!(robj.is_array(), true);
            assert_eq!(robj.nrows(), 2);
            assert_eq!(robj.ncols(), 2);
            let array2 : RMatrix3D<f64> = robj.as_matrix3d().ok_or("expected matrix3d")?;
            assert_eq!(array2.data().len(), 8);
            assert_eq!(array2.nrows(), 2);
            assert_eq!(array2.ncols(), 2);
            assert_eq!(array2.nsub(), 2);
        }
    }

    #[test]
    fn test_from_vec_doubles_to_matrix() {
        test! {
        // R: pracma::magic(5) -> x
        //    x[1:5**2]
        // Thus `res` is a list of col-vectors.
        let res: Vec<Doubles> = vec![
            vec![17.0, 23.0, 4.0, 10.0, 11.0].try_into().unwrap(),
            vec![24.0, 5.0, 6.0, 12.0, 18.0].try_into().unwrap(),
            vec![1.0, 7.0, 13.0, 19.0, 25.0].try_into().unwrap(),
            vec![8.0, 14.0, 20.0, 21.0, 2.0].try_into().unwrap(),
            vec![15.0, 16.0, 22.0, 3.0, 9.0].try_into().unwrap(),
        ];
        let (n_x, n_y) = (5, 5);
        let _matrix = RMatrix::new_matrix(n_x, n_y, |r, c| res[c][r]);

        }
    }
}