1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
use super::*;
use crate::scalar::Scalar;
use crate::single_threaded;

mod repeat_into_robj;

/// Returns an `CHARSXP` based on the provided `&str`.
///
/// Note that R does string interning, thus repeated application of this
/// function on the same string, will incur little computational cost.
///
/// Note, that you must protect the return value somehow.
pub(crate) fn str_to_character(s: &str) -> SEXP {
    unsafe {
        if s.is_na() {
            R_NaString
        } else if s.is_empty() {
            R_BlankString
        } else {
            single_threaded(|| {
                // this function embeds a terminating \nul
                Rf_mkCharLenCE(s.as_ptr().cast(), s.len() as i32, cetype_t::CE_UTF8)
            })
        }
    }
}

/// Convert a null to an Robj.
impl From<()> for Robj {
    fn from(_: ()) -> Self {
        // Note: we do not need to protect this.
        unsafe { Robj::from_sexp(R_NilValue) }
    }
}

/// Convert a [`Result`] to an [`Robj`].
///
/// Panics if there is an error.
///
/// To use the `?`-operator, an extendr-function must return either [`extendr_api::error::Result`] or [`std::result::Result`].
/// Use of `panic!` in extendr is discouraged due to memory leakage.
///
/// Alternative behaviors enabled by feature toggles:
/// extendr-api supports different conversions from [`Result<T,E>`] into `Robj`.
/// Below, `x_ok` represents an R variable on R side which was returned from rust via `T::into_robj()` or similar.
/// Likewise, `x_err` was returned to R side from rust via `E::into_robj()` or similar.
/// extendr-api
/// * `result_list`: `Ok(T)` is encoded as `list(ok = x_ok, err = NULL)` and `Err` as `list(ok = NULL, err = e_err)`.
/// * `result_condition'`: `Ok(T)` is encoded as `x_ok` and `Err(E)` as `condition(msg="extendr_error", value = x_err, class=c("extendr_error", "error", "condition"))`
/// * More than one enabled feature: Only one feature gate will take effect, the current order of precedence is [`result_list`, `result_condition`, ... ].
/// * Neither of the above (default): `Ok(T)` is encoded as `x_ok`and `Err(E)` will trigger `throw_r_error()`, which is discouraged.
/// ```
/// use extendr_api::prelude::*;
/// fn my_func() -> Result<f64> {
///     Ok(1.0)
/// }
///
/// test! {
///     assert_eq!(r!(my_func()), r!(1.0));
/// }
/// ```
///
/// [`extendr_api::error::Result`]: crate::error::Result
#[cfg(not(any(feature = "result_list", feature = "result_condition")))]
impl<T, E> From<std::result::Result<T, E>> for Robj
where
    T: Into<Robj>,
    E: std::fmt::Debug,
{
    fn from(res: std::result::Result<T, E>) -> Self {
        res.unwrap().into()
    }
}

/// Convert a [`Result`] to an [`Robj`]. Return either `Ok` value or `Err` value wrapped in an
/// error condition. This allows using `?` operator in functions
/// and returning [`Result<T>`] without panicking on `Err`. `T` must implement [`IntoRobj`].
///
/// Returns `Ok` value as is. Returns `Err` wrapped in an R error condition. The `Err` is placed in
/// $value field of the condition, and its message is set to 'extendr_err'
#[cfg(all(feature = "result_condition", not(feature = "result_list")))]
impl<T, E> From<std::result::Result<T, E>> for Robj
where
    T: Into<Robj>,
    E: Into<Robj>,
{
    fn from(res: std::result::Result<T, E>) -> Self {
        use crate as extendr_api;
        match res {
            Ok(x) => x.into(),
            Err(x) => {
                let mut err = list!(message = "extendr_err", value = x.into());
                err.set_class(["extendr_error", "error", "condition"])
                    .expect("internal error: failed to set class");
                err.into()
            }
        }
    }
}

/// Convert a `Result` to an R `List` with an `ok` and `err` elements.
/// This allows using `?` operator in functions
/// and returning [`std::result::Result`] or [`extendr_api::error::Result`]
/// without panicking on `Err`.
///
/// [`extendr_api::error::Result`]: crate::error::Result
#[cfg(feature = "result_list")]
impl<T, E> From<std::result::Result<T, E>> for Robj
where
    T: Into<Robj>,
    E: Into<Robj>,
{
    fn from(res: std::result::Result<T, E>) -> Self {
        use crate as extendr_api;
        let mut result = match res {
            Ok(x) => list!(ok = x.into(), err = NULL),
            Err(x) => {
                let err_robj = x.into();
                if err_robj.is_null() {
                    panic!("Internal error: result_list not allowed to return NULL as err-value")
                }
                list!(ok = NULL, err = err_robj)
            }
        };
        result
            .set_class(&["extendr_result"])
            .expect("Internal error: failed to set class");
        result.into()
    }
}

// string conversions from Error trait to Robj and String
impl From<Error> for Robj {
    fn from(res: Error) -> Self {
        res.to_string().into()
    }
}
impl From<Error> for String {
    fn from(res: Error) -> Self {
        res.to_string()
    }
}

/// Convert an Robj reference into a borrowed Robj.
impl From<&Robj> for Robj {
    // Note: we should probably have a much better reference
    // mechanism as double-free or underprotection is a distinct possibility.
    fn from(val: &Robj) -> Self {
        unsafe { Robj::from_sexp(val.get()) }
    }
}

/// This is an extension trait to provide a convenience method `into_robj()`.
///
/// Defer to `From<T> for Robj`-impls if you have custom types.
///
pub trait IntoRobj {
    fn into_robj(self) -> Robj;
}

impl<T> IntoRobj for T
where
    Robj: From<T>,
{
    fn into_robj(self) -> Robj {
        self.into()
    }
}

/// `ToVectorValue` is a trait that allows many different types
/// to be converted to vectors. It is used as a type parameter
/// to `collect_robj()`.
pub trait ToVectorValue {
    fn sexptype() -> SEXPTYPE {
        SEXPTYPE::NILSXP
    }

    fn to_real(&self) -> f64
    where
        Self: Sized,
    {
        0.
    }

    fn to_complex(&self) -> Rcomplex
    where
        Self: Sized,
    {
        Rcomplex { r: 0., i: 0. }
    }

    fn to_integer(&self) -> i32
    where
        Self: Sized,
    {
        std::i32::MIN
    }

    fn to_logical(&self) -> i32
    where
        Self: Sized,
    {
        std::i32::MIN
    }

    fn to_raw(&self) -> u8
    where
        Self: Sized,
    {
        0
    }

    fn to_sexp(&self) -> SEXP
    where
        Self: Sized,
    {
        unsafe { R_NilValue }
    }
}

macro_rules! impl_real_tvv {
    ($t: ty) => {
        impl ToVectorValue for $t {
            fn sexptype() -> SEXPTYPE {
                SEXPTYPE::REALSXP
            }

            fn to_real(&self) -> f64 {
                *self as f64
            }
        }

        impl ToVectorValue for &$t {
            fn sexptype() -> SEXPTYPE {
                SEXPTYPE::REALSXP
            }

            fn to_real(&self) -> f64 {
                **self as f64
            }
        }

        impl ToVectorValue for Option<$t> {
            fn sexptype() -> SEXPTYPE {
                SEXPTYPE::REALSXP
            }

            fn to_real(&self) -> f64 {
                if self.is_some() {
                    self.unwrap() as f64
                } else {
                    unsafe { R_NaReal }
                }
            }
        }
    };
}

impl_real_tvv!(f64);
impl_real_tvv!(f32);

// Since these types might exceeds the max or min of R's 32bit integer, we need
// to return as REALSXP
impl_real_tvv!(i64);
impl_real_tvv!(u32);
impl_real_tvv!(u64);
impl_real_tvv!(usize);

macro_rules! impl_complex_tvv {
    ($t: ty) => {
        impl ToVectorValue for $t {
            fn sexptype() -> SEXPTYPE {
                SEXPTYPE::CPLXSXP
            }

            fn to_complex(&self) -> Rcomplex {
                unsafe { std::mem::transmute(*self) }
            }
        }

        impl ToVectorValue for &$t {
            fn sexptype() -> SEXPTYPE {
                SEXPTYPE::CPLXSXP
            }

            fn to_complex(&self) -> Rcomplex {
                unsafe { std::mem::transmute(**self) }
            }
        }
    };
}

impl_complex_tvv!(c64);
impl_complex_tvv!(Rcplx);
impl_complex_tvv!((f64, f64));

macro_rules! impl_integer_tvv {
    ($t: ty) => {
        impl ToVectorValue for $t {
            fn sexptype() -> SEXPTYPE {
                SEXPTYPE::INTSXP
            }

            fn to_integer(&self) -> i32 {
                *self as i32
            }
        }

        impl ToVectorValue for &$t {
            fn sexptype() -> SEXPTYPE {
                SEXPTYPE::INTSXP
            }

            fn to_integer(&self) -> i32 {
                **self as i32
            }
        }

        impl ToVectorValue for Option<$t> {
            fn sexptype() -> SEXPTYPE {
                SEXPTYPE::INTSXP
            }

            fn to_integer(&self) -> i32 {
                if self.is_some() {
                    self.unwrap() as i32
                } else {
                    unsafe { R_NaInt }
                }
            }
        }
    };
}

impl_integer_tvv!(i8);
impl_integer_tvv!(i16);
impl_integer_tvv!(i32);
impl_integer_tvv!(u16);

impl ToVectorValue for u8 {
    fn sexptype() -> SEXPTYPE {
        SEXPTYPE::RAWSXP
    }

    fn to_raw(&self) -> u8 {
        *self
    }
}

impl ToVectorValue for &u8 {
    fn sexptype() -> SEXPTYPE {
        SEXPTYPE::RAWSXP
    }

    fn to_raw(&self) -> u8 {
        **self
    }
}

macro_rules! impl_str_tvv {
    ($t: ty) => {
        impl ToVectorValue for $t {
            fn sexptype() -> SEXPTYPE {
                SEXPTYPE::STRSXP
            }

            fn to_sexp(&self) -> SEXP
            where
                Self: Sized,
            {
                str_to_character(self.as_ref())
            }
        }

        impl ToVectorValue for &$t {
            fn sexptype() -> SEXPTYPE {
                SEXPTYPE::STRSXP
            }

            fn to_sexp(&self) -> SEXP
            where
                Self: Sized,
            {
                str_to_character(self.as_ref())
            }
        }

        impl ToVectorValue for Option<$t> {
            fn sexptype() -> SEXPTYPE {
                SEXPTYPE::STRSXP
            }

            fn to_sexp(&self) -> SEXP
            where
                Self: Sized,
            {
                if let Some(s) = self {
                    str_to_character(s.as_ref())
                } else {
                    unsafe { R_NaString }
                }
            }
        }
    };
}

impl_str_tvv! {&str}
impl_str_tvv! {String}

impl ToVectorValue for bool {
    fn sexptype() -> SEXPTYPE {
        SEXPTYPE::LGLSXP
    }

    fn to_logical(&self) -> i32
    where
        Self: Sized,
    {
        *self as i32
    }
}

impl ToVectorValue for &bool {
    fn sexptype() -> SEXPTYPE {
        SEXPTYPE::LGLSXP
    }

    fn to_logical(&self) -> i32
    where
        Self: Sized,
    {
        **self as i32
    }
}

impl ToVectorValue for Rbool {
    fn sexptype() -> SEXPTYPE {
        SEXPTYPE::LGLSXP
    }

    fn to_logical(&self) -> i32
    where
        Self: Sized,
    {
        self.inner()
    }
}

impl ToVectorValue for &Rbool {
    fn sexptype() -> SEXPTYPE {
        SEXPTYPE::LGLSXP
    }

    fn to_logical(&self) -> i32
    where
        Self: Sized,
    {
        self.inner()
    }
}

impl ToVectorValue for Option<bool> {
    fn sexptype() -> SEXPTYPE {
        SEXPTYPE::LGLSXP
    }

    fn to_logical(&self) -> i32 {
        if self.is_some() {
            self.unwrap() as i32
        } else {
            unsafe { R_NaInt }
        }
    }
}

// Not thread safe.
fn fixed_size_collect<I>(iter: I, len: usize) -> Robj
where
    I: Iterator,
    I: Sized,
    I::Item: ToVectorValue,
{
    single_threaded(|| unsafe {
        // Length of the vector is known in advance.
        let sexptype = I::Item::sexptype();
        if sexptype != SEXPTYPE::NILSXP {
            let res = Robj::alloc_vector(sexptype, len);
            let sexp = res.get();
            match sexptype {
                SEXPTYPE::REALSXP => {
                    let ptr = REAL(sexp);
                    for (i, v) in iter.enumerate() {
                        *ptr.add(i) = v.to_real();
                    }
                }
                SEXPTYPE::CPLXSXP => {
                    let ptr = COMPLEX(sexp);
                    for (i, v) in iter.enumerate() {
                        *ptr.add(i) = v.to_complex();
                    }
                }
                SEXPTYPE::INTSXP => {
                    let ptr = INTEGER(sexp);
                    for (i, v) in iter.enumerate() {
                        *ptr.add(i) = v.to_integer();
                    }
                }
                SEXPTYPE::LGLSXP => {
                    let ptr = LOGICAL(sexp);
                    for (i, v) in iter.enumerate() {
                        *ptr.add(i) = v.to_logical();
                    }
                }
                SEXPTYPE::STRSXP => {
                    for (i, v) in iter.enumerate() {
                        SET_STRING_ELT(sexp, i as isize, v.to_sexp());
                    }
                }
                SEXPTYPE::RAWSXP => {
                    let ptr = RAW(sexp);
                    for (i, v) in iter.enumerate() {
                        *ptr.add(i) = v.to_raw();
                    }
                }
                _ => {
                    panic!("unexpected SEXPTYPE in collect_robj");
                }
            }
            res
        } else {
            Robj::from(())
        }
    })
}

/// Extensions to iterators for R objects including [RobjItertools::collect_robj()].
pub trait RobjItertools: Iterator {
    /// Convert a wide range of iterators to Robj.
    /// ```
    /// use extendr_api::prelude::*;
    ///
    /// test! {
    /// // Integer iterators.
    /// let robj = (0..3).collect_robj();
    /// assert_eq!(robj.as_integer_vector().unwrap(), vec![0, 1, 2]);
    ///
    /// // Logical iterators.
    /// let robj = (0..3).map(|x| x % 2 == 0).collect_robj();
    /// assert_eq!(robj.as_logical_vector().unwrap(), vec![TRUE, FALSE, TRUE]);
    ///
    /// // Numeric iterators.
    /// let robj = (0..3).map(|x| x as f64).collect_robj();
    /// assert_eq!(robj.as_real_vector().unwrap(), vec![0., 1., 2.]);
    ///
    /// // String iterators.
    /// let robj = (0..3).map(|x| format!("{}", x)).collect_robj();
    /// assert_eq!(robj.as_str_vector(), Some(vec!["0", "1", "2"]));
    /// }
    /// ```
    fn collect_robj(self) -> Robj
    where
        Self: Iterator,
        Self: Sized,
        Self::Item: ToVectorValue,
    {
        if let (len, Some(max)) = self.size_hint() {
            if len == max {
                return fixed_size_collect(self, len);
            }
        }
        // If the size is indeterminate, create a vector and call recursively.
        let vec: Vec<_> = self.collect();
        assert!(vec.iter().size_hint() == (vec.len(), Some(vec.len())));
        vec.into_iter().collect_robj()
    }

    /// Collects an iterable into an [`RArray`].
    /// The iterable must yield items column by column (aka Fortan order)
    ///
    /// # Arguments
    ///
    /// * `dims` - an array containing the length of each dimension
    fn collect_rarray<const LEN: usize>(
        self,
        dims: [usize; LEN],
    ) -> Result<RArray<Self::Item, [usize; LEN]>>
    where
        Self: Iterator,
        Self: Sized,
        Self::Item: ToVectorValue,
        Robj: for<'a> AsTypedSlice<'a, Self::Item>,
    {
        let mut vector = self.collect_robj();
        let prod = dims.iter().product::<usize>();
        if prod != vector.len() {
            return Err(Error::Other(format!(
                "The vector length ({}) does not match the length implied by the dimensions ({})",
                vector.len(),
                prod
            )));
        }
        vector.set_attrib(wrapper::symbol::dim_symbol(), dims.iter().collect_robj())?;
        let _data = vector.as_typed_slice().ok_or(Error::Other(
            "Unknown error in converting to slice".to_string(),
        ))?;
        Ok(RArray::from_parts(vector, dims))
    }
}

// Thanks to *pretzelhammer* on stackoverflow for this.
impl<T> RobjItertools for T where T: Iterator {}

// Scalars which are ToVectorValue
impl<T> From<T> for Robj
where
    T: ToVectorValue,
{
    fn from(scalar: T) -> Self {
        Some(scalar).into_iter().collect_robj()
    }
}

macro_rules! impl_from_as_iterator {
    ($t: ty) => {
        impl<T> From<$t> for Robj
        where
            $t: RobjItertools,
            <$t as Iterator>::Item: ToVectorValue,
            T: ToVectorValue,
        {
            fn from(val: $t) -> Self {
                val.collect_robj()
            }
        }
    };
}

// impl<T> From<Range<T>> for Robj
// where
//     Range<T> : RobjItertools,
//     <Range<T> as Iterator>::Item: ToVectorValue,
//     T : ToVectorValue
// {
//     fn from(val: Range<T>) -> Self {
//         val.collect_robj()
//     }
// } //

impl<'a, T, const N: usize> From<[T; N]> for Robj
where
    Self: 'a,
    T: ToVectorValue,
{
    fn from(val: [T; N]) -> Self {
        fixed_size_collect(val.into_iter(), N)
    }
}

impl<'a, T, const N: usize> From<&'a [T; N]> for Robj
where
    Self: 'a,
    &'a T: ToVectorValue + 'a,
{
    fn from(val: &'a [T; N]) -> Self {
        fixed_size_collect(val.iter(), N)
    }
}

impl<'a, T, const N: usize> From<&'a mut [T; N]> for Robj
where
    Self: 'a,
    &'a mut T: ToVectorValue + 'a,
{
    fn from(val: &'a mut [T; N]) -> Self {
        fixed_size_collect(val.iter_mut(), N)
    }
}

impl<T: ToVectorValue + Clone> From<&Vec<T>> for Robj {
    fn from(value: &Vec<T>) -> Self {
        let len = value.len();
        fixed_size_collect(value.iter().cloned(), len)
    }
}

impl<T: ToVectorValue> From<Vec<T>> for Robj {
    fn from(value: Vec<T>) -> Self {
        let len = value.len();
        fixed_size_collect(value.into_iter(), len)
    }
}

impl<'a, T> From<&'a [T]> for Robj
where
    Self: 'a,
    T: 'a,
    &'a T: ToVectorValue,
{
    fn from(val: &'a [T]) -> Self {
        val.iter().collect_robj()
    }
}

impl_from_as_iterator! {Range<T>}
impl_from_as_iterator! {RangeInclusive<T>}

impl From<Vec<Robj>> for Robj {
    /// Convert a vector of Robj into a list.
    fn from(val: Vec<Robj>) -> Self {
        List::from_values(val.iter()).into()
    }
}

impl From<Vec<Rstr>> for Robj {
    /// Convert a vector of Rstr into strings.
    fn from(val: Vec<Rstr>) -> Self {
        Strings::from_values(val).into()
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate as extendr_api;

    #[test]
    fn test_vec_rint_to_robj() {
        test! {
            let int_vec = vec![3,4,0,-2];
            let int_vec_robj: Robj = int_vec.clone().into();
            // unsafe { libR_sys::Rf_PrintValue(int_vec_robj.get())}
            assert_eq!(int_vec_robj.as_integer_slice().unwrap(), &int_vec);

            let rint_vec = vec![Rint::new(3), Rint::new(4), Rint::new(0), Rint::new(-2)];
            let rint_vec_robj: Robj = rint_vec.into();
            // unsafe { libR_sys::Rf_PrintValue(rint_vec_robj.get())}
            assert_eq!(rint_vec_robj.as_integer_slice().unwrap(), &int_vec);
        }
    }

    #[test]
    fn test_collect_rarray_matrix() {
        test! {
            // Check that collect_rarray works the same as R's matrix() function
            let rmat = (1i32..=16).collect_rarray([4, 4]);
            assert!(rmat.is_ok());
            assert_eq!(Robj::from(rmat), R!("matrix(1:16, nrow=4)").unwrap());
        }
    }

    #[test]
    fn test_collect_rarray_tensor() {
        test! {
            // Check that collect_rarray works the same as R's array() function
            let rmat = (1i32..=16).collect_rarray([2, 4, 2]);
            assert!(rmat.is_ok());
            assert_eq!(Robj::from(rmat), R!("array(1:16, dim=c(2, 4, 2))").unwrap());
        }
    }

    #[test]
    fn test_collect_rarray_matrix_failure() {
        test! {
            // Check that collect_rarray fails when given an invalid shape
            let rmat = (1i32..=16).collect_rarray([3, 3]);
            assert!(rmat.is_err());
            let msg = rmat.unwrap_err().to_string();
            assert!(msg.contains('9'));
            assert!(msg.contains("dimension"));
        }
    }

    #[test]
    fn test_collect_tensor_failure() {
        test! {
            // Check that collect_rarray fails when given an invalid shape
            let rmat = (1i32..=16).collect_rarray([3, 3, 3]);
            assert!(rmat.is_err());
            let msg = rmat.unwrap_err().to_string();
            assert!(msg.contains("27"));
            assert!(msg.contains("dimension"));
        }
    }

    #[test]
    #[cfg(all(feature = "result_condition", not(feature = "result_list")))]
    fn test_result_condition() {
        use crate::prelude::*;
        fn my_err_f() -> std::result::Result<f64, f64> {
            Err(42.0) // return err float
        }

        test! {
                  assert_eq!(
                    r!(my_err_f()),
                    R!(
        "structure(list(message = 'extendr_err',
        value = 42.0), class = c('extendr_error', 'error', 'condition'))"
                    ).unwrap()
                );
            }
    }

    #[test]
    #[cfg(feature = "result_list")]
    fn test_result_list() {
        use crate::prelude::*;
        fn my_err_f() -> std::result::Result<f64, String> {
            Err("We have water in the engine room!".to_string())
        }

        fn my_ok_f() -> std::result::Result<f64, String> {
            Ok(123.123)
        }

        test! {
            assert_eq!(
                r!(my_err_f()),
                R!("x=list(ok=NULL, err='We have water in the engine room!')
                    class(x)='extendr_result'
                    x"
                ).unwrap()
            );
            assert_eq!(
                r!(my_ok_f()),
                R!("x = list(ok=123.123, err=NULL)
                    class(x)='extendr_result'
                    x"
                ).unwrap()
            );
        }
    }
}