1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
//! `ExternalPtr` is a way to leak Rust allocated data to R, forego deallocation
//! to R and its GC strategy.
//!
//! An `ExternalPtr` encompasses three values, an owned pointer to the Rust
//! type, a `tag` and a `prot`. Tag is a helpful naming of the type, but
//! it doesn't offer any solid type-checking capability. And `prot` is meant
//! to be R values, that are supposed to be kept together with the `ExternalPtr`.
//!
//! Neither `tag` nor `prot` are attributes, therefore to use `ExternalPtr` as
//! a class in R, you must decorate it with a class-attribute manually.
//!
//! **Beware**: Equality (by way of `PartialEq`) does not imply equality of value,
//! but equality of pointer. Two objects stored as `ExternalPtr` may be equal
//! in value, but be two distinct entities, with distinct pointers.
//!
//! Instead, rely on `AsRef` to make _by value_ comparison, e.g. to compare
//! for equality of
//! two instances of `ExternalPtr<T>` by value, `a.as_ref() == b.as_ref()`.
//!
use super::*;
use std::fmt::Debug;
/// Wrapper for creating R objects containing any Rust object.
///
/// ```
/// use extendr_api::prelude::*;
/// test! {
/// let extptr = ExternalPtr::new(1);
/// assert_eq!(*extptr, 1);
/// let robj : Robj = extptr.into();
/// let extptr2 : ExternalPtr<i32> = robj.try_into().unwrap();
/// assert_eq!(*extptr2, 1);
/// }
/// ```
#[repr(transparent)]
pub struct ExternalPtr<T> {
/// This is the contained Robj.
pub(crate) robj: Robj,
/// This is a zero-length object that holds the type of the object.
_marker: std::marker::PhantomData<T>,
}
/// Manual implementation of `PartialEq`, because the constraint `T: PartialEq`
/// is not necessary.
impl<T> PartialEq for ExternalPtr<T> {
fn eq(&self, other: &Self) -> bool {
self.robj == other.robj && self._marker == other._marker
}
}
/// Manual implementation of `Clone` trait, because the assumed constraint `T: Clone` is not necessary.
impl<T> Clone for ExternalPtr<T> {
fn clone(&self) -> Self {
Self {
robj: self.robj.clone(),
_marker: self._marker,
}
}
}
impl<T> robj::GetSexp for ExternalPtr<T> {
unsafe fn get(&self) -> SEXP {
self.robj.get()
}
unsafe fn get_mut(&mut self) -> SEXP {
self.robj.get_mut()
}
/// Get a reference to a Robj for this type.
fn as_robj(&self) -> &Robj {
&self.robj
}
/// Get a mutable reference to a Robj for this type.
fn as_robj_mut(&mut self) -> &mut Robj {
&mut self.robj
}
}
/// len() and is_empty()
impl<T> Length for ExternalPtr<T> {}
/// rtype() and rany()
impl<T> Types for ExternalPtr<T> {}
/// `set_attrib`
impl<T> Attributes for ExternalPtr<T> {}
/// as_*()
impl<T> Conversions for ExternalPtr<T> {}
/// find_var() etc.
impl<T> Rinternals for ExternalPtr<T> {}
/// as_typed_slice_raw() etc.
impl<T> Slices for ExternalPtr<T> {}
/// dollar() etc.
impl<T> Operators for ExternalPtr<T> {}
impl<T> Deref for ExternalPtr<T> {
type Target = T;
/// This allows us to treat the Robj as if it is the type T.
fn deref(&self) -> &Self::Target {
self.addr()
}
}
impl<T> DerefMut for ExternalPtr<T> {
/// This allows us to treat the Robj as if it is the mutable type T.
fn deref_mut(&mut self) -> &mut Self::Target {
self.addr_mut()
}
}
impl<T> ExternalPtr<T> {
/// Construct an external pointer object from any type T.
/// In this case, the R object owns the data and will drop the Rust object
/// when the last reference is removed via register_c_finalizer.
///
/// An ExternalPtr behaves like a Box except that the information is
/// tracked by a R object.
pub fn new(val: T) -> Self {
single_threaded(|| unsafe {
// This allocates some memory for our object and moves the object into it.
let boxed = Box::new(val);
// This constructs an external pointer to our boxed data.
// into_raw() converts the box to a malloced pointer.
let robj = Robj::make_external_ptr(Box::into_raw(boxed), Robj::from(()));
extern "C" fn finalizer<T>(x: SEXP) {
unsafe {
let ptr = R_ExternalPtrAddr(x).cast::<T>();
// Free the `tag`, which is the type-name
R_SetExternalPtrTag(x, R_NilValue);
// Convert the pointer to a box and drop it implictly.
// This frees up the memory we have used and calls the "T::drop" method if there is one.
drop(Box::from_raw(ptr));
// Now set the pointer in ExternalPTR to C `NULL`
R_ClearExternalPtr(x);
}
}
// Tell R about our finalizer
robj.register_c_finalizer(Some(finalizer::<T>));
// Return an object in a wrapper.
Self {
robj,
_marker: std::marker::PhantomData,
}
})
}
// TODO: make a constructor for references?
/// Get the "tag" of an external pointer. This is the type name in the common case.
pub fn tag(&self) -> Robj {
unsafe { Robj::from_sexp(R_ExternalPtrTag(self.robj.get())) }
}
/// Get the "protected" field of an external pointer. This is NULL in the common case.
pub fn protected(&self) -> Robj {
unsafe { Robj::from_sexp(R_ExternalPtrProtected(self.robj.get())) }
}
/// Get the "address" field of an external pointer.
/// Normally, we will use Deref to do this.
///
/// ## Panics
///
/// When the underlying pointer is C `NULL`.
pub fn addr(&self) -> &T {
self.try_addr().unwrap()
}
/// Get the "address" field of an external pointer as a mutable reference.
/// Normally, we will use DerefMut to do this.
///
/// ## Panics
///
/// When the underlying pointer is C `NULL`.
pub fn addr_mut(&mut self) -> &mut T {
self.try_addr_mut().unwrap()
}
/// Get the "address" field of an external pointer.
/// Normally, we will use Deref to do this.
///
/// ## Panics
///
/// When the underlying pointer is C `NULL`.
pub fn try_addr(&self) -> Result<&T> {
unsafe {
R_ExternalPtrAddr(self.robj.get())
.cast::<T>()
.cast_const()
.as_ref()
.ok_or_else(|| Error::ExpectedExternalNonNullPtr(self.robj.clone()))
}
}
/// Get the "address" field of an external pointer as a mutable reference.
/// Normally, we will use DerefMut to do this.
///
/// ## Panics
///
/// When the underlying pointer is C `NULL`.
pub fn try_addr_mut(&mut self) -> Result<&mut T> {
unsafe {
R_ExternalPtrAddr(self.robj.get_mut())
.cast::<T>()
.as_mut()
.ok_or_else(|| Error::ExpectedExternalNonNullPtr(self.robj.clone()))
}
}
}
impl<T> TryFrom<&Robj> for &ExternalPtr<T> {
type Error = Error;
fn try_from(value: &Robj) -> Result<Self> {
if !value.is_external_pointer() {
return Err(Error::ExpectedExternalPtr(value.clone()));
}
unsafe { Ok(std::mem::transmute(value)) }
}
}
impl<T> TryFrom<&mut Robj> for &mut ExternalPtr<T> {
type Error = Error;
fn try_from(value: &mut Robj) -> Result<Self> {
if !value.is_external_pointer() {
return Err(Error::ExpectedExternalPtr(value.clone()));
}
unsafe { Ok(std::mem::transmute(value)) }
}
}
impl<T> TryFrom<&Robj> for ExternalPtr<T> {
type Error = Error;
fn try_from(robj: &Robj) -> Result<Self> {
let result: &Self = robj.try_into()?;
Ok(result.clone())
}
}
impl<T> TryFrom<Robj> for ExternalPtr<T> {
type Error = Error;
fn try_from(robj: Robj) -> Result<Self> {
<ExternalPtr<T>>::try_from(&robj)
}
}
impl<T> From<ExternalPtr<T>> for Robj {
fn from(val: ExternalPtr<T>) -> Self {
val.robj
}
}
impl<T> From<Option<ExternalPtr<T>>> for Robj {
fn from(value: Option<ExternalPtr<T>>) -> Self {
match value {
None => nil_value(),
Some(value) => value.into(),
}
}
}
impl<T: Debug> std::fmt::Debug for ExternalPtr<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
(&**self as &T).fmt(f)
}
}
impl<T> AsRef<T> for ExternalPtr<T> {
fn as_ref(&self) -> &T {
self.addr()
}
}
impl<T> AsMut<T> for ExternalPtr<T> {
fn as_mut(&mut self) -> &mut T {
self.addr_mut()
}
}
#[cfg(test)]
mod tests {
use super::*;
use extendr_engine::with_r;
#[derive(Debug)]
struct BareWrapper(i32);
#[test]
fn externalptr_is_ptr() {
with_r(|| {
let a = BareWrapper(42);
let b = BareWrapper(42);
assert_eq!(a.0, b.0);
let a_ptr = std::ptr::addr_of!(a);
let b_ptr = std::ptr::addr_of!(b);
let a_externalptr = ExternalPtr::new(a);
let b_externalptr = ExternalPtr::new(b);
assert_ne!(
a_ptr, b_ptr,
"pointers has to be equal by address, not value"
);
assert_ne!(
a_externalptr.robj, b_externalptr.robj,
"R only knows about the pointer, and not the pointee"
);
assert_ne!(
a_externalptr, b_externalptr,
"ExternalPtr acts exactly like a pointer"
);
assert_ne!(&a_externalptr, &b_externalptr,);
});
}
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Clone, Copy)]
struct Wrapper(i32);
#[test]
fn compare_externalptr_pointee() {
with_r(|| {
let a = Wrapper(42);
let b = Wrapper(42);
let a_externalptr = ExternalPtr::new(a);
let b_externalptr = ExternalPtr::new(b);
assert_eq!(a_externalptr.as_ref(), b_externalptr.as_ref());
// let's test more use of `PartialOrd` on `T`
let a_externalptr = ExternalPtr::new(Wrapper(50));
let b_externalptr = ExternalPtr::new(Wrapper(60));
assert!(a_externalptr.as_ref() <= b_externalptr.as_ref());
assert_eq!(
a_externalptr.as_ref().max(b_externalptr.as_ref()),
&Wrapper(60)
)
});
}
}