extendr_api::wrapper::rstr

Struct Rstr

Source
pub struct Rstr {
    pub(crate) robj: Robj,
}
Expand description

Wrapper for creating CHARSXP objects. These are used only as the contents of a character vector.

use extendr_api::prelude::*;
test! {
    let chr = r!(Rstr::from_string("xyz"));
    assert_eq!(chr.as_char().unwrap().as_str(), "xyz");
}

Fields§

§robj: Robj

Implementations§

Source§

impl Rstr

Source

pub fn from_string(val: &str) -> Self

Make a character object from a string.

Source

pub fn as_str(&self) -> &str

Get the string from a character object. If the string is NA, then the special na_str() is returned.

Methods from Deref<Target = str>§

1.0.0 · Source

pub fn len(&self) -> usize

Returns the length of self.

This length is in bytes, not chars or graphemes. In other words, it might not be what a human considers the length of the string.

§Examples
let len = "foo".len();
assert_eq!(3, len);

assert_eq!("ƒoo".len(), 4); // fancy f!
assert_eq!("ƒoo".chars().count(), 3);
1.0.0 · Source

pub fn is_empty(&self) -> bool

Returns true if self has a length of zero bytes.

§Examples
let s = "";
assert!(s.is_empty());

let s = "not empty";
assert!(!s.is_empty());
1.9.0 · Source

pub fn is_char_boundary(&self, index: usize) -> bool

Checks that index-th byte is the first byte in a UTF-8 code point sequence or the end of the string.

The start and end of the string (when index == self.len()) are considered to be boundaries.

Returns false if index is greater than self.len().

§Examples
let s = "Löwe 老虎 Léopard";
assert!(s.is_char_boundary(0));
// start of `老`
assert!(s.is_char_boundary(6));
assert!(s.is_char_boundary(s.len()));

// second byte of `ö`
assert!(!s.is_char_boundary(2));

// third byte of `老`
assert!(!s.is_char_boundary(8));
Source

pub fn floor_char_boundary(&self, index: usize) -> usize

🔬This is a nightly-only experimental API. (round_char_boundary)

Finds the closest x not exceeding index where is_char_boundary(x) is true.

This method can help you truncate a string so that it’s still valid UTF-8, but doesn’t exceed a given number of bytes. Note that this is done purely at the character level and can still visually split graphemes, even though the underlying characters aren’t split. For example, the emoji 🧑‍🔬 (scientist) could be split so that the string only includes 🧑 (person) instead.

§Examples
#![feature(round_char_boundary)]
let s = "❤️🧡💛💚💙💜";
assert_eq!(s.len(), 26);
assert!(!s.is_char_boundary(13));

let closest = s.floor_char_boundary(13);
assert_eq!(closest, 10);
assert_eq!(&s[..closest], "❤️🧡");
Source

pub fn ceil_char_boundary(&self, index: usize) -> usize

🔬This is a nightly-only experimental API. (round_char_boundary)

Finds the closest x not below index where is_char_boundary(x) is true.

If index is greater than the length of the string, this returns the length of the string.

This method is the natural complement to floor_char_boundary. See that method for more details.

§Examples
#![feature(round_char_boundary)]
let s = "❤️🧡💛💚💙💜";
assert_eq!(s.len(), 26);
assert!(!s.is_char_boundary(13));

let closest = s.ceil_char_boundary(13);
assert_eq!(closest, 14);
assert_eq!(&s[..closest], "❤️🧡💛");
1.0.0 · Source

pub fn as_bytes(&self) -> &[u8]

Converts a string slice to a byte slice. To convert the byte slice back into a string slice, use the from_utf8 function.

§Examples
let bytes = "bors".as_bytes();
assert_eq!(b"bors", bytes);
1.0.0 · Source

pub fn as_ptr(&self) -> *const u8

Converts a string slice to a raw pointer.

As string slices are a slice of bytes, the raw pointer points to a u8. This pointer will be pointing to the first byte of the string slice.

The caller must ensure that the returned pointer is never written to. If you need to mutate the contents of the string slice, use as_mut_ptr.

§Examples
let s = "Hello";
let ptr = s.as_ptr();
1.20.0 · Source

pub fn get<I>(&self, i: I) -> Option<&<I as SliceIndex<str>>::Output>
where I: SliceIndex<str>,

Returns a subslice of str.

This is the non-panicking alternative to indexing the str. Returns None whenever equivalent indexing operation would panic.

§Examples
let v = String::from("🗻∈🌏");

assert_eq!(Some("🗻"), v.get(0..4));

// indices not on UTF-8 sequence boundaries
assert!(v.get(1..).is_none());
assert!(v.get(..8).is_none());

// out of bounds
assert!(v.get(..42).is_none());
1.20.0 · Source

pub unsafe fn get_unchecked<I>(&self, i: I) -> &<I as SliceIndex<str>>::Output
where I: SliceIndex<str>,

Returns an unchecked subslice of str.

This is the unchecked alternative to indexing the str.

§Safety

Callers of this function are responsible that these preconditions are satisfied:

  • The starting index must not exceed the ending index;
  • Indexes must be within bounds of the original slice;
  • Indexes must lie on UTF-8 sequence boundaries.

Failing that, the returned string slice may reference invalid memory or violate the invariants communicated by the str type.

§Examples
let v = "🗻∈🌏";
unsafe {
    assert_eq!("🗻", v.get_unchecked(0..4));
    assert_eq!("∈", v.get_unchecked(4..7));
    assert_eq!("🌏", v.get_unchecked(7..11));
}
1.0.0 · Source

pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str

👎Deprecated since 1.29.0: use get_unchecked(begin..end) instead

Creates a string slice from another string slice, bypassing safety checks.

This is generally not recommended, use with caution! For a safe alternative see str and Index.

This new slice goes from begin to end, including begin but excluding end.

To get a mutable string slice instead, see the slice_mut_unchecked method.

§Safety

Callers of this function are responsible that three preconditions are satisfied:

  • begin must not exceed end.
  • begin and end must be byte positions within the string slice.
  • begin and end must lie on UTF-8 sequence boundaries.
§Examples
let s = "Löwe 老虎 Léopard";

unsafe {
    assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
}

let s = "Hello, world!";

unsafe {
    assert_eq!("world", s.slice_unchecked(7, 12));
}
1.4.0 · Source

pub fn split_at(&self, mid: usize) -> (&str, &str)

Divides one string slice into two at an index.

The argument, mid, should be a byte offset from the start of the string. It must also be on the boundary of a UTF-8 code point.

The two slices returned go from the start of the string slice to mid, and from mid to the end of the string slice.

To get mutable string slices instead, see the split_at_mut method.

§Panics

Panics if mid is not on a UTF-8 code point boundary, or if it is past the end of the last code point of the string slice. For a non-panicking alternative see split_at_checked.

§Examples
let s = "Per Martin-Löf";

let (first, last) = s.split_at(3);

assert_eq!("Per", first);
assert_eq!(" Martin-Löf", last);
1.80.0 · Source

pub fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)>

Divides one string slice into two at an index.

The argument, mid, should be a valid byte offset from the start of the string. It must also be on the boundary of a UTF-8 code point. The method returns None if that’s not the case.

The two slices returned go from the start of the string slice to mid, and from mid to the end of the string slice.

To get mutable string slices instead, see the split_at_mut_checked method.

§Examples
let s = "Per Martin-Löf";

let (first, last) = s.split_at_checked(3).unwrap();
assert_eq!("Per", first);
assert_eq!(" Martin-Löf", last);

assert_eq!(None, s.split_at_checked(13));  // Inside “ö”
assert_eq!(None, s.split_at_checked(16));  // Beyond the string length
1.0.0 · Source

pub fn chars(&self) -> Chars<'_>

Returns an iterator over the chars of a string slice.

As a string slice consists of valid UTF-8, we can iterate through a string slice by char. This method returns such an iterator.

It’s important to remember that char represents a Unicode Scalar Value, and might not match your idea of what a ‘character’ is. Iteration over grapheme clusters may be what you actually want. This functionality is not provided by Rust’s standard library, check crates.io instead.

§Examples

Basic usage:

let word = "goodbye";

let count = word.chars().count();
assert_eq!(7, count);

let mut chars = word.chars();

assert_eq!(Some('g'), chars.next());
assert_eq!(Some('o'), chars.next());
assert_eq!(Some('o'), chars.next());
assert_eq!(Some('d'), chars.next());
assert_eq!(Some('b'), chars.next());
assert_eq!(Some('y'), chars.next());
assert_eq!(Some('e'), chars.next());

assert_eq!(None, chars.next());

Remember, chars might not match your intuition about characters:

let y = "y̆";

let mut chars = y.chars();

assert_eq!(Some('y'), chars.next()); // not 'y̆'
assert_eq!(Some('\u{0306}'), chars.next());

assert_eq!(None, chars.next());
1.0.0 · Source

pub fn char_indices(&self) -> CharIndices<'_>

Returns an iterator over the chars of a string slice, and their positions.

As a string slice consists of valid UTF-8, we can iterate through a string slice by char. This method returns an iterator of both these chars, as well as their byte positions.

The iterator yields tuples. The position is first, the char is second.

§Examples

Basic usage:

let word = "goodbye";

let count = word.char_indices().count();
assert_eq!(7, count);

let mut char_indices = word.char_indices();

assert_eq!(Some((0, 'g')), char_indices.next());
assert_eq!(Some((1, 'o')), char_indices.next());
assert_eq!(Some((2, 'o')), char_indices.next());
assert_eq!(Some((3, 'd')), char_indices.next());
assert_eq!(Some((4, 'b')), char_indices.next());
assert_eq!(Some((5, 'y')), char_indices.next());
assert_eq!(Some((6, 'e')), char_indices.next());

assert_eq!(None, char_indices.next());

Remember, chars might not match your intuition about characters:

let yes = "y̆es";

let mut char_indices = yes.char_indices();

assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
assert_eq!(Some((1, '\u{0306}')), char_indices.next());

// note the 3 here - the previous character took up two bytes
assert_eq!(Some((3, 'e')), char_indices.next());
assert_eq!(Some((4, 's')), char_indices.next());

assert_eq!(None, char_indices.next());
1.0.0 · Source

pub fn bytes(&self) -> Bytes<'_>

Returns an iterator over the bytes of a string slice.

As a string slice consists of a sequence of bytes, we can iterate through a string slice by byte. This method returns such an iterator.

§Examples
let mut bytes = "bors".bytes();

assert_eq!(Some(b'b'), bytes.next());
assert_eq!(Some(b'o'), bytes.next());
assert_eq!(Some(b'r'), bytes.next());
assert_eq!(Some(b's'), bytes.next());

assert_eq!(None, bytes.next());
1.1.0 · Source

pub fn split_whitespace(&self) -> SplitWhitespace<'_>

Splits a string slice by whitespace.

The iterator returned will return string slices that are sub-slices of the original string slice, separated by any amount of whitespace.

‘Whitespace’ is defined according to the terms of the Unicode Derived Core Property White_Space. If you only want to split on ASCII whitespace instead, use split_ascii_whitespace.

§Examples

Basic usage:

let mut iter = "A few words".split_whitespace();

assert_eq!(Some("A"), iter.next());
assert_eq!(Some("few"), iter.next());
assert_eq!(Some("words"), iter.next());

assert_eq!(None, iter.next());

All kinds of whitespace are considered:

let mut iter = " Mary   had\ta\u{2009}little  \n\t lamb".split_whitespace();
assert_eq!(Some("Mary"), iter.next());
assert_eq!(Some("had"), iter.next());
assert_eq!(Some("a"), iter.next());
assert_eq!(Some("little"), iter.next());
assert_eq!(Some("lamb"), iter.next());

assert_eq!(None, iter.next());

If the string is empty or all whitespace, the iterator yields no string slices:

assert_eq!("".split_whitespace().next(), None);
assert_eq!("   ".split_whitespace().next(), None);
1.34.0 · Source

pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_>

Splits a string slice by ASCII whitespace.

The iterator returned will return string slices that are sub-slices of the original string slice, separated by any amount of ASCII whitespace.

To split by Unicode Whitespace instead, use split_whitespace.

§Examples

Basic usage:

let mut iter = "A few words".split_ascii_whitespace();

assert_eq!(Some("A"), iter.next());
assert_eq!(Some("few"), iter.next());
assert_eq!(Some("words"), iter.next());

assert_eq!(None, iter.next());

All kinds of ASCII whitespace are considered:

let mut iter = " Mary   had\ta little  \n\t lamb".split_ascii_whitespace();
assert_eq!(Some("Mary"), iter.next());
assert_eq!(Some("had"), iter.next());
assert_eq!(Some("a"), iter.next());
assert_eq!(Some("little"), iter.next());
assert_eq!(Some("lamb"), iter.next());

assert_eq!(None, iter.next());

If the string is empty or all ASCII whitespace, the iterator yields no string slices:

assert_eq!("".split_ascii_whitespace().next(), None);
assert_eq!("   ".split_ascii_whitespace().next(), None);
1.0.0 · Source

pub fn lines(&self) -> Lines<'_>

Returns an iterator over the lines of a string, as string slices.

Lines are split at line endings that are either newlines (\n) or sequences of a carriage return followed by a line feed (\r\n).

Line terminators are not included in the lines returned by the iterator.

Note that any carriage return (\r) not immediately followed by a line feed (\n) does not split a line. These carriage returns are thereby included in the produced lines.

The final line ending is optional. A string that ends with a final line ending will return the same lines as an otherwise identical string without a final line ending.

§Examples

Basic usage:

let text = "foo\r\nbar\n\nbaz\r";
let mut lines = text.lines();

assert_eq!(Some("foo"), lines.next());
assert_eq!(Some("bar"), lines.next());
assert_eq!(Some(""), lines.next());
// Trailing carriage return is included in the last line
assert_eq!(Some("baz\r"), lines.next());

assert_eq!(None, lines.next());

The final line does not require any ending:

let text = "foo\nbar\n\r\nbaz";
let mut lines = text.lines();

assert_eq!(Some("foo"), lines.next());
assert_eq!(Some("bar"), lines.next());
assert_eq!(Some(""), lines.next());
assert_eq!(Some("baz"), lines.next());

assert_eq!(None, lines.next());
1.0.0 · Source

pub fn lines_any(&self) -> LinesAny<'_>

👎Deprecated since 1.4.0: use lines() instead now

Returns an iterator over the lines of a string.

1.8.0 · Source

pub fn encode_utf16(&self) -> EncodeUtf16<'_>

Returns an iterator of u16 over the string encoded as UTF-16.

§Examples
let text = "Zażółć gęślą jaźń";

let utf8_len = text.len();
let utf16_len = text.encode_utf16().count();

assert!(utf16_len <= utf8_len);
1.0.0 · Source

pub fn contains<P>(&self, pat: P) -> bool
where P: Pattern,

Returns true if the given pattern matches a sub-slice of this string slice.

Returns false if it does not.

The pattern can be a &str, char, a slice of chars, or a function or closure that determines if a character matches.

§Examples
let bananas = "bananas";

assert!(bananas.contains("nana"));
assert!(!bananas.contains("apples"));
1.0.0 · Source

pub fn starts_with<P>(&self, pat: P) -> bool
where P: Pattern,

Returns true if the given pattern matches a prefix of this string slice.

Returns false if it does not.

The pattern can be a &str, in which case this function will return true if the &str is a prefix of this string slice.

The pattern can also be a char, a slice of chars, or a function or closure that determines if a character matches. These will only be checked against the first character of this string slice. Look at the second example below regarding behavior for slices of chars.

§Examples
let bananas = "bananas";

assert!(bananas.starts_with("bana"));
assert!(!bananas.starts_with("nana"));
let bananas = "bananas";

// Note that both of these assert successfully.
assert!(bananas.starts_with(&['b', 'a', 'n', 'a']));
assert!(bananas.starts_with(&['a', 'b', 'c', 'd']));
1.0.0 · Source

pub fn ends_with<P>(&self, pat: P) -> bool
where P: Pattern, <P as Pattern>::Searcher<'a>: for<'a> ReverseSearcher<'a>,

Returns true if the given pattern matches a suffix of this string slice.

Returns false if it does not.

The pattern can be a &str, char, a slice of chars, or a function or closure that determines if a character matches.

§Examples
let bananas = "bananas";

assert!(bananas.ends_with("anas"));
assert!(!bananas.ends_with("nana"));
1.0.0 · Source

pub fn find<P>(&self, pat: P) -> Option<usize>
where P: Pattern,

Returns the byte index of the first character of this string slice that matches the pattern.

Returns None if the pattern doesn’t match.

The pattern can be a &str, char, a slice of chars, or a function or closure that determines if a character matches.

§Examples

Simple patterns:

let s = "Löwe 老虎 Léopard Gepardi";

assert_eq!(s.find('L'), Some(0));
assert_eq!(s.find('é'), Some(14));
assert_eq!(s.find("pard"), Some(17));

More complex patterns using point-free style and closures:

let s = "Löwe 老虎 Léopard";

assert_eq!(s.find(char::is_whitespace), Some(5));
assert_eq!(s.find(char::is_lowercase), Some(1));
assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));

Not finding the pattern:

let s = "Löwe 老虎 Léopard";
let x: &[_] = &['1', '2'];

assert_eq!(s.find(x), None);
1.0.0 · Source

pub fn rfind<P>(&self, pat: P) -> Option<usize>
where P: Pattern, <P as Pattern>::Searcher<'a>: for<'a> ReverseSearcher<'a>,

Returns the byte index for the first character of the last match of the pattern in this string slice.

Returns None if the pattern doesn’t match.

The pattern can be a &str, char, a slice of chars, or a function or closure that determines if a character matches.

§Examples

Simple patterns:

let s = "Löwe 老虎 Léopard Gepardi";

assert_eq!(s.rfind('L'), Some(13));
assert_eq!(s.rfind('é'), Some(14));
assert_eq!(s.rfind("pard"), Some(24));

More complex patterns with closures:

let s = "Löwe 老虎 Léopard";

assert_eq!(s.rfind(char::is_whitespace), Some(12));
assert_eq!(s.rfind(char::is_lowercase), Some(20));

Not finding the pattern:

let s = "Löwe 老虎 Léopard";
let x: &[_] = &['1', '2'];

assert_eq!(s.rfind(x), None);
1.0.0 · Source

pub fn split<P>(&self, pat: P) -> Split<'_, P>
where P: Pattern,

Returns an iterator over substrings of this string slice, separated by characters matched by a pattern.

The pattern can be a &str, char, a slice of chars, or a function or closure that determines if a character matches.

§Iterator behavior

The returned iterator will be a DoubleEndedIterator if the pattern allows a reverse search and forward/reverse search yields the same elements. This is true for, e.g., char, but not for &str.

If the pattern allows a reverse search but its results might differ from a forward search, the rsplit method can be used.

§Examples

Simple patterns:

let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);

let v: Vec<&str> = "".split('X').collect();
assert_eq!(v, [""]);

let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
assert_eq!(v, ["lion", "", "tiger", "leopard"]);

let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
assert_eq!(v, ["lion", "tiger", "leopard"]);

let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
assert_eq!(v, ["abc", "def", "ghi"]);

let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
assert_eq!(v, ["lion", "tiger", "leopard"]);

If the pattern is a slice of chars, split on each occurrence of any of the characters:

let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
assert_eq!(v, ["2020", "11", "03", "23", "59"]);

A more complex pattern, using a closure:

let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
assert_eq!(v, ["abc", "def", "ghi"]);

If a string contains multiple contiguous separators, you will end up with empty strings in the output:

let x = "||||a||b|c".to_string();
let d: Vec<_> = x.split('|').collect();

assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);

Contiguous separators are separated by the empty string.

let x = "(///)".to_string();
let d: Vec<_> = x.split('/').collect();

assert_eq!(d, &["(", "", "", ")"]);

Separators at the start or end of a string are neighbored by empty strings.

let d: Vec<_> = "010".split("0").collect();
assert_eq!(d, &["", "1", ""]);

When the empty string is used as a separator, it separates every character in the string, along with the beginning and end of the string.

let f: Vec<_> = "rust".split("").collect();
assert_eq!(f, &["", "r", "u", "s", "t", ""]);

Contiguous separators can lead to possibly surprising behavior when whitespace is used as the separator. This code is correct:

let x = "    a  b c".to_string();
let d: Vec<_> = x.split(' ').collect();

assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);

It does not give you:

assert_eq!(d, &["a", "b", "c"]);

Use split_whitespace for this behavior.

1.51.0 · Source

pub fn split_inclusive<P>(&self, pat: P) -> SplitInclusive<'_, P>
where P: Pattern,

Returns an iterator over substrings of this string slice, separated by characters matched by a pattern.

Differs from the iterator produced by split in that split_inclusive leaves the matched part as the terminator of the substring.

The pattern can be a &str, char, a slice of chars, or a function or closure that determines if a character matches.

§Examples
let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
    .split_inclusive('\n').collect();
assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);

If the last element of the string is matched, that element will be considered the terminator of the preceding substring. That substring will be the last item returned by the iterator.

let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
    .split_inclusive('\n').collect();
assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
1.0.0 · Source

pub fn rsplit<P>(&self, pat: P) -> RSplit<'_, P>
where P: Pattern, <P as Pattern>::Searcher<'a>: for<'a> ReverseSearcher<'a>,

Returns an iterator over substrings of the given string slice, separated by characters matched by a pattern and yielded in reverse order.

The pattern can be a &str, char, a slice of chars, or a function or closure that determines if a character matches.

§Iterator behavior

The returned iterator requires that the pattern supports a reverse search, and it will be a DoubleEndedIterator if a forward/reverse search yields the same elements.

For iterating from the front, the split method can be used.

§Examples

Simple patterns:

let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);

let v: Vec<&str> = "".rsplit('X').collect();
assert_eq!(v, [""]);

let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
assert_eq!(v, ["leopard", "tiger", "", "lion"]);

let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
assert_eq!(v, ["leopard", "tiger", "lion"]);

A more complex pattern, using a closure:

let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
assert_eq!(v, ["ghi", "def", "abc"]);
1.0.0 · Source

pub fn split_terminator<P>(&self, pat: P) -> SplitTerminator<'_, P>
where P: Pattern,

Returns an iterator over substrings of the given string slice, separated by characters matched by a pattern.

The pattern can be a &str, char, a slice of chars, or a function or closure that determines if a character matches.

Equivalent to split, except that the trailing substring is skipped if empty.

This method can be used for string data that is terminated, rather than separated by a pattern.

§Iterator behavior

The returned iterator will be a DoubleEndedIterator if the pattern allows a reverse search and forward/reverse search yields the same elements. This is true for, e.g., char, but not for &str.

If the pattern allows a reverse search but its results might differ from a forward search, the rsplit_terminator method can be used.

§Examples
let v: Vec<&str> = "A.B.".split_terminator('.').collect();
assert_eq!(v, ["A", "B"]);

let v: Vec<&str> = "A..B..".split_terminator(".").collect();
assert_eq!(v, ["A", "", "B", ""]);

let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
assert_eq!(v, ["A", "B", "C", "D"]);
1.0.0 · Source

pub fn rsplit_terminator<P>(&self, pat: P) -> RSplitTerminator<'_, P>
where P: Pattern, <P as Pattern>::Searcher<'a>: for<'a> ReverseSearcher<'a>,

Returns an iterator over substrings of self, separated by characters matched by a pattern and yielded in reverse order.

The pattern can be a &str, char, a slice of chars, or a function or closure that determines if a character matches.

Equivalent to split, except that the trailing substring is skipped if empty.

This method can be used for string data that is terminated, rather than separated by a pattern.

§Iterator behavior

The returned iterator requires that the pattern supports a reverse search, and it will be double ended if a forward/reverse search yields the same elements.

For iterating from the front, the split_terminator method can be used.

§Examples
let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
assert_eq!(v, ["B", "A"]);

let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
assert_eq!(v, ["", "B", "", "A"]);

let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
assert_eq!(v, ["D", "C", "B", "A"]);
1.0.0 · Source

pub fn splitn<P>(&self, n: usize, pat: P) -> SplitN<'_, P>
where P: Pattern,

Returns an iterator over substrings of the given string slice, separated by a pattern, restricted to returning at most n items.

If n substrings are returned, the last substring (the nth substring) will contain the remainder of the string.

The pattern can be a &str, char, a slice of chars, or a function or closure that determines if a character matches.

§Iterator behavior

The returned iterator will not be double ended, because it is not efficient to support.

If the pattern allows a reverse search, the rsplitn method can be used.

§Examples

Simple patterns:

let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
assert_eq!(v, ["Mary", "had", "a little lambda"]);

let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
assert_eq!(v, ["lion", "", "tigerXleopard"]);

let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
assert_eq!(v, ["abcXdef"]);

let v: Vec<&str> = "".splitn(1, 'X').collect();
assert_eq!(v, [""]);

A more complex pattern, using a closure:

let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
assert_eq!(v, ["abc", "defXghi"]);
1.0.0 · Source

pub fn rsplitn<P>(&self, n: usize, pat: P) -> RSplitN<'_, P>
where P: Pattern, <P as Pattern>::Searcher<'a>: for<'a> ReverseSearcher<'a>,

Returns an iterator over substrings of this string slice, separated by a pattern, starting from the end of the string, restricted to returning at most n items.

If n substrings are returned, the last substring (the nth substring) will contain the remainder of the string.

The pattern can be a &str, char, a slice of chars, or a function or closure that determines if a character matches.

§Iterator behavior

The returned iterator will not be double ended, because it is not efficient to support.

For splitting from the front, the splitn method can be used.

§Examples

Simple patterns:

let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
assert_eq!(v, ["lamb", "little", "Mary had a"]);

let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
assert_eq!(v, ["leopard", "tiger", "lionX"]);

let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
assert_eq!(v, ["leopard", "lion::tiger"]);

A more complex pattern, using a closure:

let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
assert_eq!(v, ["ghi", "abc1def"]);
1.52.0 · Source

pub fn split_once<P>(&self, delimiter: P) -> Option<(&str, &str)>
where P: Pattern,

Splits the string on the first occurrence of the specified delimiter and returns prefix before delimiter and suffix after delimiter.

§Examples
assert_eq!("cfg".split_once('='), None);
assert_eq!("cfg=".split_once('='), Some(("cfg", "")));
assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));
1.52.0 · Source

pub fn rsplit_once<P>(&self, delimiter: P) -> Option<(&str, &str)>
where P: Pattern, <P as Pattern>::Searcher<'a>: for<'a> ReverseSearcher<'a>,

Splits the string on the last occurrence of the specified delimiter and returns prefix before delimiter and suffix after delimiter.

§Examples
assert_eq!("cfg".rsplit_once('='), None);
assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));
1.2.0 · Source

pub fn matches<P>(&self, pat: P) -> Matches<'_, P>
where P: Pattern,

Returns an iterator over the disjoint matches of a pattern within the given string slice.

The pattern can be a &str, char, a slice of chars, or a function or closure that determines if a character matches.

§Iterator behavior

The returned iterator will be a DoubleEndedIterator if the pattern allows a reverse search and forward/reverse search yields the same elements. This is true for, e.g., char, but not for &str.

If the pattern allows a reverse search but its results might differ from a forward search, the rmatches method can be used.

§Examples
let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
assert_eq!(v, ["abc", "abc", "abc"]);

let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
assert_eq!(v, ["1", "2", "3"]);
1.2.0 · Source

pub fn rmatches<P>(&self, pat: P) -> RMatches<'_, P>
where P: Pattern, <P as Pattern>::Searcher<'a>: for<'a> ReverseSearcher<'a>,

Returns an iterator over the disjoint matches of a pattern within this string slice, yielded in reverse order.

The pattern can be a &str, char, a slice of chars, or a function or closure that determines if a character matches.

§Iterator behavior

The returned iterator requires that the pattern supports a reverse search, and it will be a DoubleEndedIterator if a forward/reverse search yields the same elements.

For iterating from the front, the matches method can be used.

§Examples
let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
assert_eq!(v, ["abc", "abc", "abc"]);

let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
assert_eq!(v, ["3", "2", "1"]);
1.5.0 · Source

pub fn match_indices<P>(&self, pat: P) -> MatchIndices<'_, P>
where P: Pattern,

Returns an iterator over the disjoint matches of a pattern within this string slice as well as the index that the match starts at.

For matches of pat within self that overlap, only the indices corresponding to the first match are returned.

The pattern can be a &str, char, a slice of chars, or a function or closure that determines if a character matches.

§Iterator behavior

The returned iterator will be a DoubleEndedIterator if the pattern allows a reverse search and forward/reverse search yields the same elements. This is true for, e.g., char, but not for &str.

If the pattern allows a reverse search but its results might differ from a forward search, the rmatch_indices method can be used.

§Examples
let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);

let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
assert_eq!(v, [(1, "abc"), (4, "abc")]);

let v: Vec<_> = "ababa".match_indices("aba").collect();
assert_eq!(v, [(0, "aba")]); // only the first `aba`
1.5.0 · Source

pub fn rmatch_indices<P>(&self, pat: P) -> RMatchIndices<'_, P>
where P: Pattern, <P as Pattern>::Searcher<'a>: for<'a> ReverseSearcher<'a>,

Returns an iterator over the disjoint matches of a pattern within self, yielded in reverse order along with the index of the match.

For matches of pat within self that overlap, only the indices corresponding to the last match are returned.

The pattern can be a &str, char, a slice of chars, or a function or closure that determines if a character matches.

§Iterator behavior

The returned iterator requires that the pattern supports a reverse search, and it will be a DoubleEndedIterator if a forward/reverse search yields the same elements.

For iterating from the front, the match_indices method can be used.

§Examples
let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);

let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
assert_eq!(v, [(4, "abc"), (1, "abc")]);

let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
assert_eq!(v, [(2, "aba")]); // only the last `aba`
1.0.0 · Source

pub fn trim(&self) -> &str

Returns a string slice with leading and trailing whitespace removed.

‘Whitespace’ is defined according to the terms of the Unicode Derived Core Property White_Space, which includes newlines.

§Examples
let s = "\n Hello\tworld\t\n";

assert_eq!("Hello\tworld", s.trim());
1.30.0 · Source

pub fn trim_start(&self) -> &str

Returns a string slice with leading whitespace removed.

‘Whitespace’ is defined according to the terms of the Unicode Derived Core Property White_Space, which includes newlines.

§Text directionality

A string is a sequence of bytes. start in this context means the first position of that byte string; for a left-to-right language like English or Russian, this will be left side, and for right-to-left languages like Arabic or Hebrew, this will be the right side.

§Examples

Basic usage:

let s = "\n Hello\tworld\t\n";
assert_eq!("Hello\tworld\t\n", s.trim_start());

Directionality:

let s = "  English  ";
assert!(Some('E') == s.trim_start().chars().next());

let s = "  עברית  ";
assert!(Some('ע') == s.trim_start().chars().next());
1.30.0 · Source

pub fn trim_end(&self) -> &str

Returns a string slice with trailing whitespace removed.

‘Whitespace’ is defined according to the terms of the Unicode Derived Core Property White_Space, which includes newlines.

§Text directionality

A string is a sequence of bytes. end in this context means the last position of that byte string; for a left-to-right language like English or Russian, this will be right side, and for right-to-left languages like Arabic or Hebrew, this will be the left side.

§Examples

Basic usage:

let s = "\n Hello\tworld\t\n";
assert_eq!("\n Hello\tworld", s.trim_end());

Directionality:

let s = "  English  ";
assert!(Some('h') == s.trim_end().chars().rev().next());

let s = "  עברית  ";
assert!(Some('ת') == s.trim_end().chars().rev().next());
1.0.0 · Source

pub fn trim_left(&self) -> &str

👎Deprecated since 1.33.0: superseded by trim_start

Returns a string slice with leading whitespace removed.

‘Whitespace’ is defined according to the terms of the Unicode Derived Core Property White_Space.

§Text directionality

A string is a sequence of bytes. ‘Left’ in this context means the first position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the right side, not the left.

§Examples

Basic usage:

let s = " Hello\tworld\t";

assert_eq!("Hello\tworld\t", s.trim_left());

Directionality:

let s = "  English";
assert!(Some('E') == s.trim_left().chars().next());

let s = "  עברית";
assert!(Some('ע') == s.trim_left().chars().next());
1.0.0 · Source

pub fn trim_right(&self) -> &str

👎Deprecated since 1.33.0: superseded by trim_end

Returns a string slice with trailing whitespace removed.

‘Whitespace’ is defined according to the terms of the Unicode Derived Core Property White_Space.

§Text directionality

A string is a sequence of bytes. ‘Right’ in this context means the last position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the left side, not the right.

§Examples

Basic usage:

let s = " Hello\tworld\t";

assert_eq!(" Hello\tworld", s.trim_right());

Directionality:

let s = "English  ";
assert!(Some('h') == s.trim_right().chars().rev().next());

let s = "עברית  ";
assert!(Some('ת') == s.trim_right().chars().rev().next());
1.0.0 · Source

pub fn trim_matches<P>(&self, pat: P) -> &str
where P: Pattern, <P as Pattern>::Searcher<'a>: for<'a> DoubleEndedSearcher<'a>,

Returns a string slice with all prefixes and suffixes that match a pattern repeatedly removed.

The pattern can be a char, a slice of chars, or a function or closure that determines if a character matches.

§Examples

Simple patterns:

assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");

let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");

A more complex pattern, using a closure:

assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
1.30.0 · Source

pub fn trim_start_matches<P>(&self, pat: P) -> &str
where P: Pattern,

Returns a string slice with all prefixes that match a pattern repeatedly removed.

The pattern can be a &str, char, a slice of chars, or a function or closure that determines if a character matches.

§Text directionality

A string is a sequence of bytes. start in this context means the first position of that byte string; for a left-to-right language like English or Russian, this will be left side, and for right-to-left languages like Arabic or Hebrew, this will be the right side.

§Examples
assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");

let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
1.45.0 · Source

pub fn strip_prefix<P>(&self, prefix: P) -> Option<&str>
where P: Pattern,

Returns a string slice with the prefix removed.

If the string starts with the pattern prefix, returns the substring after the prefix, wrapped in Some. Unlike trim_start_matches, this method removes the prefix exactly once.

If the string does not start with prefix, returns None.

The pattern can be a &str, char, a slice of chars, or a function or closure that determines if a character matches.

§Examples
assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
assert_eq!("foo:bar".strip_prefix("bar"), None);
assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));
1.45.0 · Source

pub fn strip_suffix<P>(&self, suffix: P) -> Option<&str>
where P: Pattern, <P as Pattern>::Searcher<'a>: for<'a> ReverseSearcher<'a>,

Returns a string slice with the suffix removed.

If the string ends with the pattern suffix, returns the substring before the suffix, wrapped in Some. Unlike trim_end_matches, this method removes the suffix exactly once.

If the string does not end with suffix, returns None.

The pattern can be a &str, char, a slice of chars, or a function or closure that determines if a character matches.

§Examples
assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
assert_eq!("bar:foo".strip_suffix("bar"), None);
assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));
1.30.0 · Source

pub fn trim_end_matches<P>(&self, pat: P) -> &str
where P: Pattern, <P as Pattern>::Searcher<'a>: for<'a> ReverseSearcher<'a>,

Returns a string slice with all suffixes that match a pattern repeatedly removed.

The pattern can be a &str, char, a slice of chars, or a function or closure that determines if a character matches.

§Text directionality

A string is a sequence of bytes. end in this context means the last position of that byte string; for a left-to-right language like English or Russian, this will be right side, and for right-to-left languages like Arabic or Hebrew, this will be the left side.

§Examples

Simple patterns:

assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");

let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");

A more complex pattern, using a closure:

assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
1.0.0 · Source

pub fn trim_left_matches<P>(&self, pat: P) -> &str
where P: Pattern,

👎Deprecated since 1.33.0: superseded by trim_start_matches

Returns a string slice with all prefixes that match a pattern repeatedly removed.

The pattern can be a &str, char, a slice of chars, or a function or closure that determines if a character matches.

§Text directionality

A string is a sequence of bytes. ‘Left’ in this context means the first position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the right side, not the left.

§Examples
assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");

let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
1.0.0 · Source

pub fn trim_right_matches<P>(&self, pat: P) -> &str
where P: Pattern, <P as Pattern>::Searcher<'a>: for<'a> ReverseSearcher<'a>,

👎Deprecated since 1.33.0: superseded by trim_end_matches

Returns a string slice with all suffixes that match a pattern repeatedly removed.

The pattern can be a &str, char, a slice of chars, or a function or closure that determines if a character matches.

§Text directionality

A string is a sequence of bytes. ‘Right’ in this context means the last position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the left side, not the right.

§Examples

Simple patterns:

assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");

let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");

A more complex pattern, using a closure:

assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
1.0.0 · Source

pub fn parse<F>(&self) -> Result<F, <F as FromStr>::Err>
where F: FromStr,

Parses this string slice into another type.

Because parse is so general, it can cause problems with type inference. As such, parse is one of the few times you’ll see the syntax affectionately known as the ‘turbofish’: ::<>. This helps the inference algorithm understand specifically which type you’re trying to parse into.

parse can parse into any type that implements the FromStr trait.

§Errors

Will return Err if it’s not possible to parse this string slice into the desired type.

§Examples

Basic usage

let four: u32 = "4".parse().unwrap();

assert_eq!(4, four);

Using the ‘turbofish’ instead of annotating four:

let four = "4".parse::<u32>();

assert_eq!(Ok(4), four);

Failing to parse:

let nope = "j".parse::<u32>();

assert!(nope.is_err());
1.23.0 · Source

pub fn is_ascii(&self) -> bool

Checks if all characters in this string are within the ASCII range.

§Examples
let ascii = "hello!\n";
let non_ascii = "Grüße, Jürgen ❤";

assert!(ascii.is_ascii());
assert!(!non_ascii.is_ascii());
Source

pub fn as_ascii(&self) -> Option<&[AsciiChar]>

🔬This is a nightly-only experimental API. (ascii_char)

If this string slice is_ascii, returns it as a slice of ASCII characters, otherwise returns None.

1.23.0 · Source

pub fn eq_ignore_ascii_case(&self, other: &str) -> bool

Checks that two strings are an ASCII case-insensitive match.

Same as to_ascii_lowercase(a) == to_ascii_lowercase(b), but without allocating and copying temporaries.

§Examples
assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
1.80.0 · Source

pub fn trim_ascii_start(&self) -> &str

Returns a string slice with leading ASCII whitespace removed.

‘Whitespace’ refers to the definition used by u8::is_ascii_whitespace.

§Examples
assert_eq!(" \t \u{3000}hello world\n".trim_ascii_start(), "\u{3000}hello world\n");
assert_eq!("  ".trim_ascii_start(), "");
assert_eq!("".trim_ascii_start(), "");
1.80.0 · Source

pub fn trim_ascii_end(&self) -> &str

Returns a string slice with trailing ASCII whitespace removed.

‘Whitespace’ refers to the definition used by u8::is_ascii_whitespace.

§Examples
assert_eq!("\r hello world\u{3000}\n ".trim_ascii_end(), "\r hello world\u{3000}");
assert_eq!("  ".trim_ascii_end(), "");
assert_eq!("".trim_ascii_end(), "");
1.80.0 · Source

pub fn trim_ascii(&self) -> &str

Returns a string slice with leading and trailing ASCII whitespace removed.

‘Whitespace’ refers to the definition used by u8::is_ascii_whitespace.

§Examples
assert_eq!("\r hello world\n ".trim_ascii(), "hello world");
assert_eq!("  ".trim_ascii(), "");
assert_eq!("".trim_ascii(), "");
1.34.0 · Source

pub fn escape_debug(&self) -> EscapeDebug<'_>

Returns an iterator that escapes each char in self with char::escape_debug.

Note: only extended grapheme codepoints that begin the string will be escaped.

§Examples

As an iterator:

for c in "❤\n!".escape_debug() {
    print!("{c}");
}
println!();

Using println! directly:

println!("{}", "❤\n!".escape_debug());

Both are equivalent to:

println!("❤\\n!");

Using to_string:

assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
1.34.0 · Source

pub fn escape_default(&self) -> EscapeDefault<'_>

Returns an iterator that escapes each char in self with char::escape_default.

§Examples

As an iterator:

for c in "❤\n!".escape_default() {
    print!("{c}");
}
println!();

Using println! directly:

println!("{}", "❤\n!".escape_default());

Both are equivalent to:

println!("\\u{{2764}}\\n!");

Using to_string:

assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
1.34.0 · Source

pub fn escape_unicode(&self) -> EscapeUnicode<'_>

Returns an iterator that escapes each char in self with char::escape_unicode.

§Examples

As an iterator:

for c in "❤\n!".escape_unicode() {
    print!("{c}");
}
println!();

Using println! directly:

println!("{}", "❤\n!".escape_unicode());

Both are equivalent to:

println!("\\u{{2764}}\\u{{a}}\\u{{21}}");

Using to_string:

assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
Source

pub fn substr_range(&self, substr: &str) -> Option<Range<usize>>

🔬This is a nightly-only experimental API. (substr_range)

Returns the range that a substring points to.

Returns None if substr does not point within self.

Unlike str::find, this does not search through the string. Instead, it uses pointer arithmetic to find where in the string substr is derived from.

This is useful for extending str::split and similar methods.

Note that this method may return false positives (typically either Some(0..0) or Some(self.len()..self.len())) if substr is a zero-length str that points at the beginning or end of another, independent, str.

§Examples
#![feature(substr_range)]

let data = "a, b, b, a";
let mut iter = data.split(", ").map(|s| data.substr_range(s).unwrap());

assert_eq!(iter.next(), Some(0..1));
assert_eq!(iter.next(), Some(3..4));
assert_eq!(iter.next(), Some(6..7));
assert_eq!(iter.next(), Some(9..10));
Source

pub fn as_str(&self) -> &str

🔬This is a nightly-only experimental API. (str_as_str)

Returns the same string as a string slice &str.

This method is redundant when used directly on &str, but it helps dereferencing other string-like types to string slices, for example references to Box<str> or Arc<str>.

1.0.0 · Source

pub fn replace<P>(&self, from: P, to: &str) -> String
where P: Pattern,

Replaces all matches of a pattern with another string.

replace creates a new String, and copies the data from this string slice into it. While doing so, it attempts to find matches of a pattern. If it finds any, it replaces them with the replacement string slice.

§Examples

Basic usage:

let s = "this is old";

assert_eq!("this is new", s.replace("old", "new"));
assert_eq!("than an old", s.replace("is", "an"));

When the pattern doesn’t match, it returns this string slice as String:

let s = "this is old";
assert_eq!(s, s.replace("cookie monster", "little lamb"));
1.16.0 · Source

pub fn replacen<P>(&self, pat: P, to: &str, count: usize) -> String
where P: Pattern,

Replaces first N matches of a pattern with another string.

replacen creates a new String, and copies the data from this string slice into it. While doing so, it attempts to find matches of a pattern. If it finds any, it replaces them with the replacement string slice at most count times.

§Examples

Basic usage:

let s = "foo foo 123 foo";
assert_eq!("new new 123 foo", s.replacen("foo", "new", 2));
assert_eq!("faa fao 123 foo", s.replacen('o', "a", 3));
assert_eq!("foo foo new23 foo", s.replacen(char::is_numeric, "new", 1));

When the pattern doesn’t match, it returns this string slice as String:

let s = "this is old";
assert_eq!(s, s.replacen("cookie monster", "little lamb", 10));
1.2.0 · Source

pub fn to_lowercase(&self) -> String

Returns the lowercase equivalent of this string slice, as a new String.

‘Lowercase’ is defined according to the terms of the Unicode Derived Core Property Lowercase.

Since some characters can expand into multiple characters when changing the case, this function returns a String instead of modifying the parameter in-place.

§Examples

Basic usage:

let s = "HELLO";

assert_eq!("hello", s.to_lowercase());

A tricky example, with sigma:

let sigma = "Σ";

assert_eq!("σ", sigma.to_lowercase());

// but at the end of a word, it's ς, not σ:
let odysseus = "ὈΔΥΣΣΕΎΣ";

assert_eq!("ὀδυσσεύς", odysseus.to_lowercase());

Languages without case are not changed:

let new_year = "农历新年";

assert_eq!(new_year, new_year.to_lowercase());
1.2.0 · Source

pub fn to_uppercase(&self) -> String

Returns the uppercase equivalent of this string slice, as a new String.

‘Uppercase’ is defined according to the terms of the Unicode Derived Core Property Uppercase.

Since some characters can expand into multiple characters when changing the case, this function returns a String instead of modifying the parameter in-place.

§Examples

Basic usage:

let s = "hello";

assert_eq!("HELLO", s.to_uppercase());

Scripts without case are not changed:

let new_year = "农历新年";

assert_eq!(new_year, new_year.to_uppercase());

One character can become multiple:

let s = "tschüß";

assert_eq!("TSCHÜSS", s.to_uppercase());
1.16.0 · Source

pub fn repeat(&self, n: usize) -> String

Creates a new String by repeating a string n times.

§Panics

This function will panic if the capacity would overflow.

§Examples

Basic usage:

assert_eq!("abc".repeat(4), String::from("abcabcabcabc"));

A panic upon overflow:

// this will panic at runtime
let huge = "0123456789abcdef".repeat(usize::MAX);
1.23.0 · Source

pub fn to_ascii_uppercase(&self) -> String

Returns a copy of this string where each character is mapped to its ASCII upper case equivalent.

ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.

To uppercase the value in-place, use make_ascii_uppercase.

To uppercase ASCII characters in addition to non-ASCII characters, use to_uppercase.

§Examples
let s = "Grüße, Jürgen ❤";

assert_eq!("GRüßE, JüRGEN ❤", s.to_ascii_uppercase());
1.23.0 · Source

pub fn to_ascii_lowercase(&self) -> String

Returns a copy of this string where each character is mapped to its ASCII lower case equivalent.

ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.

To lowercase the value in-place, use make_ascii_lowercase.

To lowercase ASCII characters in addition to non-ASCII characters, use to_lowercase.

§Examples
let s = "Grüße, Jürgen ❤";

assert_eq!("grüße, jürgen ❤", s.to_ascii_lowercase());

Trait Implementations§

Source§

impl AsRef<str> for Rstr

Source§

fn as_ref(&self) -> &str

Treat a Rstr as a string slice.

Source§

impl<'a> AsTypedSlice<'a, Rstr> for Robj
where Self: 'a,

Source§

fn as_typed_slice(&self) -> Option<&'a [Rstr]>

Source§

fn as_typed_slice_mut(&mut self) -> Option<&'a mut [Rstr]>

Source§

impl CanBeNA for Rstr

Source§

fn is_na(&self) -> bool

Source§

fn na() -> Self

Source§

impl Clone for Rstr

Source§

fn clone(&self) -> Rstr

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Conversions for Rstr

as_*()

Source§

fn as_symbol(&self) -> Option<Symbol>

Convert a symbol object to a Symbol wrapper. Read more
Source§

fn as_char(&self) -> Option<Rstr>

Convert a CHARSXP object to a Rstr wrapper. Read more
Source§

fn as_raw(&self) -> Option<Raw>

Convert a raw object to a Rstr wrapper. Read more
Source§

fn as_language(&self) -> Option<Language>

Convert a language object to a Language wrapper. Read more
Source§

fn as_pairlist(&self) -> Option<Pairlist>

Convert a pair list object (LISTSXP) to a Pairlist wrapper. Read more
Source§

fn as_list(&self) -> Option<List>

Convert a list object (VECSXP) to a List wrapper. Read more
Source§

fn as_expressions(&self) -> Option<Expressions>

Convert an expression object (EXPRSXP) to a Expr wrapper. Read more
Source§

fn as_environment(&self) -> Option<Environment>

Convert an environment object (ENVSXP) to a Env wrapper. Read more
Source§

fn as_function(&self) -> Option<Function>

Convert a function object (CLOSXP) to a Function wrapper. Read more
Source§

fn as_promise(&self) -> Option<Promise>

Get a wrapper for a promise.
Source§

impl Debug for Rstr

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Deref for Rstr

Source§

fn deref(&self) -> &Self::Target

Treat Rstr like &str.

Source§

type Target = str

The resulting type after dereferencing.
Source§

impl<'de> Deserialize<'de> for Rstr

Source§

fn deserialize<D>(deserializer: D) -> Result<Rstr, D::Error>
where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
Source§

impl<'de> Deserializer<'de> for &'de Rstr

Source§

type Error = Error

The error type that can be returned if some error occurs during deserialization.
Source§

fn deserialize_any<V>(self, _visitor: V) -> Result<V::Value>
where V: Visitor<'de>,

Require the Deserializer to figure out how to drive the visitor based on what data type is in the input. Read more
Source§

fn deserialize_identifier<V>(self, visitor: V) -> Result<V::Value>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting the name of a struct field or the discriminant of an enum variant.
Source§

fn deserialize_bool<V>( self, visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting a bool value.
Source§

fn deserialize_i8<V>( self, visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting an i8 value.
Source§

fn deserialize_i16<V>( self, visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting an i16 value.
Source§

fn deserialize_i32<V>( self, visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting an i32 value.
Source§

fn deserialize_i64<V>( self, visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting an i64 value.
Source§

fn deserialize_i128<V>( self, visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting an i128 value. Read more
Source§

fn deserialize_u8<V>( self, visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting a u8 value.
Source§

fn deserialize_u16<V>( self, visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting a u16 value.
Source§

fn deserialize_u32<V>( self, visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting a u32 value.
Source§

fn deserialize_u64<V>( self, visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting a u64 value.
Source§

fn deserialize_u128<V>( self, visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting an u128 value. Read more
Source§

fn deserialize_f32<V>( self, visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting a f32 value.
Source§

fn deserialize_f64<V>( self, visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting a f64 value.
Source§

fn deserialize_char<V>( self, visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting a char value.
Source§

fn deserialize_string<V>( self, visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting a string value and would benefit from taking ownership of buffered data owned by the Deserializer. Read more
Source§

fn deserialize_str<V>( self, visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting a string value and does not benefit from taking ownership of buffered data owned by the Deserializer. Read more
Source§

fn deserialize_bytes<V>( self, visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting a byte array and does not benefit from taking ownership of buffered data owned by the Deserializer. Read more
Source§

fn deserialize_byte_buf<V>( self, visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting a byte array and would benefit from taking ownership of buffered data owned by the Deserializer. Read more
Source§

fn deserialize_option<V>( self, visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting an optional value. Read more
Source§

fn deserialize_unit<V>( self, visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting a unit value.
Source§

fn deserialize_unit_struct<V>( self, name: &'static str, visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting a unit struct with a particular name.
Source§

fn deserialize_newtype_struct<V>( self, name: &'static str, visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting a newtype struct with a particular name.
Source§

fn deserialize_seq<V>( self, visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting a sequence of values.
Source§

fn deserialize_tuple<V>( self, len: usize, visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting a sequence of values and knows how many values there are without looking at the serialized data.
Source§

fn deserialize_tuple_struct<V>( self, name: &'static str, len: usize, visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting a tuple struct with a particular name and number of fields.
Source§

fn deserialize_map<V>( self, visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting a map of key-value pairs.
Source§

fn deserialize_struct<V>( self, name: &'static str, fields: &'static [&'static str], visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting a struct with a particular name and fields.
Source§

fn deserialize_enum<V>( self, name: &'static str, variants: &'static [&'static str], visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type is expecting an enum value with a particular name and possible variants.
Source§

fn deserialize_ignored_any<V>( self, visitor: V, ) -> Result<V::Value, <Self as Deserializer<'de>>::Error>
where V: Visitor<'de>,

Hint that the Deserialize type needs to deserialize a value whose type doesn’t matter because it is ignored. Read more
Source§

fn is_human_readable(&self) -> bool

Determine whether Deserialize implementations should expect to deserialize their human-readable form. Read more
Source§

impl Display for Rstr

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl From<&Rstr> for &str

Source§

fn from(value: &Rstr) -> Self

Converts to this type from the input type.
Source§

impl From<&Rstr> for Robj

Source§

fn from(val: &Rstr) -> Self

Make an robj from a wrapper.

Source§

impl From<&str> for Rstr

Source§

fn from(s: &str) -> Self

Convert a string slice to a Rstr.

Source§

impl From<Option<String>> for Rstr

Source§

fn from(value: Option<String>) -> Self

Converts to this type from the input type.
Source§

impl From<Rstr> for Robj

Source§

fn from(val: Rstr) -> Self

Make an robj from a wrapper.

Source§

impl From<String> for Rstr

Source§

fn from(s: String) -> Self

Convert a String to a Rstr.

Source§

impl GetSexp for Rstr

Source§

unsafe fn get(&self) -> SEXP

Get a copy of the underlying SEXP. Read more
Source§

unsafe fn get_mut(&mut self) -> SEXP

Source§

fn as_robj(&self) -> &Robj

Get a reference to a Robj for this type.
Source§

fn as_robj_mut(&mut self) -> &mut Robj

Get a mutable reference to a Robj for this type.
Source§

impl Length for Rstr

len() and is_empty()

Source§

fn len(&self) -> usize

Get the extended length of the object. Read more
Source§

fn is_empty(&self) -> bool

Returns true if the Robj contains no elements. Read more
Source§

impl Operators for Rstr

dollar() etc.

Source§

fn dollar<T>(&self, symbol: T) -> Result<Robj>
where T: AsRef<str>,

Do the equivalent of x$y Read more
Source§

fn slice<T>(&self, rhs: T) -> Result<Robj>
where T: Into<Robj>,

Do the equivalent of x[y] Read more
Source§

fn index<T>(&self, rhs: T) -> Result<Robj>
where T: Into<Robj>,

Do the equivalent of x[[y]] Read more
Source§

fn tilde<T>(&self, rhs: T) -> Result<Robj>
where T: Into<Robj>,

Do the equivalent of x ~ y Read more
Source§

fn double_colon<T>(&self, rhs: T) -> Result<Robj>
where T: Into<Robj>,

Do the equivalent of x :: y Read more
Source§

fn call(&self, args: Pairlist) -> Result<Robj>

Do the equivalent of x(a, b, c) Read more
Source§

impl PartialEq<&str> for Rstr

Source§

fn eq(&self, other: &&str) -> bool

Compare a Rstr with a string slice.

1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialEq<Rstr> for &&str

Source§

fn eq(&self, other: &Rstr) -> bool

Compare a Rstr with a string slice.

1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialEq<Rstr> for &str

Source§

fn eq(&self, other: &Rstr) -> bool

Compare a Rstr with a string slice.

1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialEq<str> for Rstr

Let performant than comparing Rstr directly as we need to convert Rstr to a string slice first

Source§

fn eq(&self, other: &str) -> bool

Compare a Rstr with a string slice.

1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialEq for Rstr

Defer comparison to R’s string interner

Source§

fn eq(&self, other: &Rstr) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl Rinternals for Rstr

find_var() etc.

Source§

fn is_null(&self) -> bool

Return true if this is the null object.
Source§

fn is_symbol(&self) -> bool

Return true if this is a symbol.
Source§

fn is_logical(&self) -> bool

Return true if this is a boolean (logical) vector
Source§

fn is_real(&self) -> bool

Return true if this is a real (f64) vector.
Source§

fn is_complex(&self) -> bool

Return true if this is a complex vector.
Source§

fn is_expressions(&self) -> bool

Return true if this is an expression.
Source§

fn is_environment(&self) -> bool

Return true if this is an environment.
Source§

fn is_promise(&self) -> bool

Return true if this is an environment.
Source§

fn is_string(&self) -> bool

Return true if this is a string.
Source§

fn is_object(&self) -> bool

Return true if this is an object (ie. has a class attribute).
Source§

fn is_s4(&self) -> bool

Return true if this is a S4 object.
Source§

fn is_external_pointer(&self) -> bool

Return true if this is an expression.
Source§

fn get_current_srcref(val: i32) -> Robj

Get the source ref.
Source§

fn get_src_filename(&self) -> Robj

Get the source filename.
Source§

fn as_character_vector(&self) -> Robj

Convert to a string vector.
Source§

fn coerce_vector(&self, sexptype: SEXPTYPE) -> Robj

Convert to vectors of many kinds.
Source§

fn pair_to_vector_list(&self) -> Robj

Convert a pairlist (LISTSXP) to a vector list (VECSXP).
Source§

fn vector_to_pair_list(&self) -> Robj

Convert a vector list (VECSXP) to a pair list (LISTSXP)
Source§

fn as_character_factor(&self) -> Robj

Convert a factor to a string vector.
Source§

fn alloc_matrix(sexptype: SEXPTYPE, rows: i32, cols: i32) -> Robj

Allocate a matrix object.
Source§

fn duplicate(&self) -> Robj

Do a deep copy of this object. Note that clone() only adds a reference.
Source§

fn find_function<K: TryInto<Symbol, Error = Error>>( &self, key: K, ) -> Result<Robj>

Find a function in an environment ignoring other variables. Read more
Source§

fn find_var<K: TryInto<Symbol, Error = Error>>(&self, key: K) -> Result<Robj>

Find a variable in an environment. Read more
Source§

fn ncols(&self) -> usize

Number of columns of a matrix
Source§

fn nrows(&self) -> usize

Number of rows of a matrix
Source§

fn xlengthgets(&self, new_len: usize) -> Result<Robj>

Source§

fn alloc_vector(sexptype: SEXPTYPE, len: usize) -> Robj

Allocated an owned object of a certain type.
Source§

fn conformable(a: &Robj, b: &Robj) -> bool

Return true if two arrays have identical dims.
Source§

fn is_array(&self) -> bool

Return true if this is an array.
Source§

fn is_factor(&self) -> bool

Return true if this is factor.
Source§

fn is_frame(&self) -> bool

Return true if this is a data frame.
Source§

fn is_function(&self) -> bool

Return true if this is a function or a primitive (CLOSXP, BUILTINSXP or SPECIALSXP)
Source§

fn is_integer(&self) -> bool

Return true if this is an integer vector (INTSXP) but not a factor.
Source§

fn is_language(&self) -> bool

Return true if this is a language object (LANGSXP).
Source§

fn is_pairlist(&self) -> bool

Return true if this is NILSXP or LISTSXP.
Source§

fn is_matrix(&self) -> bool

Return true if this is a matrix.
Source§

fn is_list(&self) -> bool

Return true if this is NILSXP or VECSXP.
Source§

fn is_number(&self) -> bool

Return true if this is INTSXP, LGLSXP or REALSXP but not a factor.
Source§

fn is_primitive(&self) -> bool

Return true if this is a primitive function BUILTINSXP, SPECIALSXP.
Source§

fn is_ts(&self) -> bool

Return true if this is a time series vector (see tsp).
Source§

fn is_user_binop(&self) -> bool

Return true if this is a user defined binop.
Source§

fn is_vector(&self) -> bool

Return true if this is a vector.
Source§

fn is_vector_atomic(&self) -> bool

Return true if this is an atomic vector.
Source§

fn is_vector_list(&self) -> bool

Return true if this is a vector list.
Source§

fn is_vectorizable(&self) -> bool

Return true if this is can be made into a vector.
Source§

fn is_raw(&self) -> bool

Return true if this is RAWSXP.
Source§

fn is_char(&self) -> bool

Return true if this is CHARSXP.
Source§

fn is_missing_arg(&self) -> bool

Source§

fn is_unbound_value(&self) -> bool

Source§

fn is_package_env(&self) -> bool

Source§

fn package_env_name(&self) -> Robj

Source§

fn is_namespace_env(&self) -> bool

Source§

fn namespace_env_spec(&self) -> Robj

Source§

fn is_altrep(&self) -> bool

Returns true if this is an ALTREP object.
Source§

fn is_altinteger(&self) -> bool

Returns true if this is an integer ALTREP object.
Source§

fn is_altreal(&self) -> bool

Returns true if this is an real ALTREP object.
Source§

fn is_altlogical(&self) -> bool

Returns true if this is an logical ALTREP object.
Source§

fn is_altraw(&self) -> bool

Returns true if this is a raw ALTREP object.
Source§

fn is_altstring(&self) -> bool

Returns true if this is an integer ALTREP object.
Source§

fn is_altlist(&self) -> bool

Returns true if this is an integer ALTREP object.
Source§

fn deparse(&self) -> Result<String>

Generate a text representation of this object.
Source§

impl Serialize for Rstr

Source§

fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where S: Serializer,

Serialize this value into the given Serde serializer. Read more
Source§

impl Slices for Rstr

as_typed_slice_raw() etc.

Source§

unsafe fn as_typed_slice_raw<T>(&self) -> &[T]

Get an immutable slice to this object’s data. Read more
Source§

unsafe fn as_typed_slice_raw_mut<T>(&mut self) -> &mut [T]

Get a mutable slice to this object’s data. Read more
Source§

impl TryFrom<&Robj> for Rstr

Source§

fn try_from(robj: &Robj) -> Result<Self>

Make a wrapper from a robj if it matches.

Source§

type Error = Error

The type returned in the event of a conversion error.
Source§

impl TryFrom<Robj> for Rstr

Source§

fn try_from(robj: Robj) -> Result<Self>

Make a wrapper from a robj if it matches.

Source§

type Error = Error

The type returned in the event of a conversion error.
Source§

impl Types for Rstr

rtype() and rany()

Source§

fn rtype(&self) -> Rtype

Get the type of an R object. Read more
Source§

fn as_any(&self) -> Rany<'_>

Auto Trait Implementations§

§

impl Freeze for Rstr

§

impl RefUnwindSafe for Rstr

§

impl !Send for Rstr

§

impl !Sync for Rstr

§

impl Unpin for Rstr

§

impl UnwindSafe for Rstr

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
§

impl<'short, T, Target> AsGeneralizedRef<'short, &'short Target> for T
where T: AsRef<Target> + ?Sized, Target: ?Sized,

Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> IntoRobj for T
where Robj: From<T>,

§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<R> Save for R
where R: GetSexp,

Source§

fn save<P: AsRef<Path>>( &self, path: &P, format: PstreamFormat, version: i32, hook: Option<WriteHook>, ) -> Result<()>

Save an object in the R data format. version should probably be 3.
Source§

fn to_writer<W: Write>( &self, writer: &mut W, format: PstreamFormat, version: i32, hook: Option<WriteHook>, ) -> Result<()>

Save an object in the R data format to a Write trait. version should probably be 3.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T> ToString for T
where T: Display + ?Sized,

Source§

default fn to_string(&self) -> String

Converts the given value to a String. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,